MakeItFrom.com
Menu (ESC)

520.0 Aluminum vs. Nickel 22

520.0 aluminum belongs to the aluminum alloys classification, while nickel 22 belongs to the nickel alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 520.0 aluminum and the bottom bar is nickel 22.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 66
220
Elongation at Break, % 14
49
Fatigue Strength, MPa 55
330
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 25
84
Shear Strength, MPa 230
560
Tensile Strength: Ultimate (UTS), MPa 330
790
Tensile Strength: Yield (Proof), MPa 170
360

Thermal Properties

Latent Heat of Fusion, J/g 390
320
Maximum Temperature: Mechanical, °C 170
990
Melting Completion (Liquidus), °C 600
1390
Melting Onset (Solidus), °C 480
1360
Specific Heat Capacity, J/kg-K 910
430
Thermal Conductivity, W/m-K 87
10
Thermal Expansion, µm/m-K 25
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 21
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 72
1.5

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
70
Density, g/cm3 2.6
8.9
Embodied Carbon, kg CO2/kg material 9.8
12
Embodied Energy, MJ/kg 160
170
Embodied Water, L/kg 1170
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 39
320
Resilience: Unit (Modulus of Resilience), kJ/m3 230
300
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 52
22
Strength to Weight: Axial, points 35
25
Strength to Weight: Bending, points 41
21
Thermal Diffusivity, mm2/s 37
2.7
Thermal Shock Resistance, points 14
24

Alloy Composition

Aluminum (Al), % 87.9 to 90.5
0
Carbon (C), % 0
0 to 0.015
Chromium (Cr), % 0
20 to 22.5
Cobalt (Co), % 0
0 to 2.5
Copper (Cu), % 0 to 0.25
0
Iron (Fe), % 0 to 0.3
2.0 to 6.0
Magnesium (Mg), % 9.5 to 10.6
0
Manganese (Mn), % 0 to 0.15
0 to 0.015
Molybdenum (Mo), % 0
12.5 to 14.5
Nickel (Ni), % 0
50.8 to 63
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0 to 0.25
0 to 0.080
Sulfur (S), % 0
0 to 0.020
Titanium (Ti), % 0 to 0.25
0
Tungsten (W), % 0
2.5 to 3.5
Vanadium (V), % 0
0 to 0.35
Zinc (Zn), % 0 to 0.15
0
Residuals, % 0 to 0.15
0