MakeItFrom.com
Menu (ESC)

520.0 Aluminum vs. SAE-AISI 4150 Steel

520.0 aluminum belongs to the aluminum alloys classification, while SAE-AISI 4150 steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 520.0 aluminum and the bottom bar is SAE-AISI 4150 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 75
200 to 380
Elastic (Young's, Tensile) Modulus, GPa 66
190
Elongation at Break, % 14
12 to 20
Fatigue Strength, MPa 55
260 to 780
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 25
73
Shear Strength, MPa 230
410 to 800
Tensile Strength: Ultimate (UTS), MPa 330
660 to 1310
Tensile Strength: Yield (Proof), MPa 170
380 to 1220

Thermal Properties

Latent Heat of Fusion, J/g 390
250
Maximum Temperature: Mechanical, °C 170
420
Melting Completion (Liquidus), °C 600
1460
Melting Onset (Solidus), °C 480
1420
Specific Heat Capacity, J/kg-K 910
470
Thermal Conductivity, W/m-K 87
42
Thermal Expansion, µm/m-K 25
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 21
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 72
8.4

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
2.4
Density, g/cm3 2.6
7.8
Embodied Carbon, kg CO2/kg material 9.8
1.5
Embodied Energy, MJ/kg 160
20
Embodied Water, L/kg 1170
51

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 39
82 to 180
Resilience: Unit (Modulus of Resilience), kJ/m3 230
380 to 3930
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 52
24
Strength to Weight: Axial, points 35
24 to 47
Strength to Weight: Bending, points 41
22 to 34
Thermal Diffusivity, mm2/s 37
11
Thermal Shock Resistance, points 14
19 to 39

Alloy Composition

Aluminum (Al), % 87.9 to 90.5
0
Carbon (C), % 0
0.48 to 0.53
Chromium (Cr), % 0
0.8 to 1.1
Copper (Cu), % 0 to 0.25
0
Iron (Fe), % 0 to 0.3
96.7 to 97.7
Magnesium (Mg), % 9.5 to 10.6
0
Manganese (Mn), % 0 to 0.15
0.75 to 1.0
Molybdenum (Mo), % 0
0.15 to 0.25
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0 to 0.25
0.15 to 0.35
Sulfur (S), % 0
0 to 0.040
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 0.15
0
Residuals, % 0 to 0.15
0