MakeItFrom.com
Menu (ESC)

520.0 Aluminum vs. C82000 Copper

520.0 aluminum belongs to the aluminum alloys classification, while C82000 copper belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 520.0 aluminum and the bottom bar is C82000 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 66
120
Elongation at Break, % 14
8.0 to 20
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 25
45
Tensile Strength: Ultimate (UTS), MPa 330
350 to 690
Tensile Strength: Yield (Proof), MPa 170
140 to 520

Thermal Properties

Latent Heat of Fusion, J/g 390
220
Maximum Temperature: Mechanical, °C 170
220
Melting Completion (Liquidus), °C 600
1090
Melting Onset (Solidus), °C 480
970
Specific Heat Capacity, J/kg-K 910
390
Thermal Conductivity, W/m-K 87
260
Thermal Expansion, µm/m-K 25
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 21
45
Electrical Conductivity: Equal Weight (Specific), % IACS 72
46

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
60
Density, g/cm3 2.6
8.9
Embodied Carbon, kg CO2/kg material 9.8
5.0
Embodied Energy, MJ/kg 160
77
Embodied Water, L/kg 1170
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 39
51 to 55
Resilience: Unit (Modulus of Resilience), kJ/m3 230
80 to 1120
Stiffness to Weight: Axial, points 14
7.5
Stiffness to Weight: Bending, points 52
18
Strength to Weight: Axial, points 35
11 to 22
Strength to Weight: Bending, points 41
12 to 20
Thermal Diffusivity, mm2/s 37
76
Thermal Shock Resistance, points 14
12 to 24

Alloy Composition

Aluminum (Al), % 87.9 to 90.5
0 to 0.1
Beryllium (Be), % 0
0.45 to 0.8
Chromium (Cr), % 0
0 to 0.1
Cobalt (Co), % 0
2.2 to 2.7
Copper (Cu), % 0 to 0.25
95.2 to 97.4
Iron (Fe), % 0 to 0.3
0 to 0.1
Lead (Pb), % 0
0 to 0.020
Magnesium (Mg), % 9.5 to 10.6
0
Manganese (Mn), % 0 to 0.15
0
Nickel (Ni), % 0
0 to 0.2
Silicon (Si), % 0 to 0.25
0 to 0.15
Tin (Sn), % 0
0 to 0.1
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 0.15
0 to 0.1
Residuals, % 0
0 to 0.5