MakeItFrom.com
Menu (ESC)

520.0 Aluminum vs. C90500 Gun Metal

520.0 aluminum belongs to the aluminum alloys classification, while C90500 gun metal belongs to the copper alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 520.0 aluminum and the bottom bar is C90500 gun metal.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 66
110
Elongation at Break, % 14
20
Fatigue Strength, MPa 55
90
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 25
40
Tensile Strength: Ultimate (UTS), MPa 330
320
Tensile Strength: Yield (Proof), MPa 170
160

Thermal Properties

Latent Heat of Fusion, J/g 390
190
Maximum Temperature: Mechanical, °C 170
170
Melting Completion (Liquidus), °C 600
1000
Melting Onset (Solidus), °C 480
850
Solidification (Pattern Maker's) Shrinkage, % 0.8
1.6
Specific Heat Capacity, J/kg-K 910
370
Thermal Conductivity, W/m-K 87
75
Thermal Expansion, µm/m-K 25
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 21
11
Electrical Conductivity: Equal Weight (Specific), % IACS 72
11

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
35
Density, g/cm3 2.6
8.7
Embodied Carbon, kg CO2/kg material 9.8
3.6
Embodied Energy, MJ/kg 160
59
Embodied Water, L/kg 1170
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 39
54
Resilience: Unit (Modulus of Resilience), kJ/m3 230
110
Stiffness to Weight: Axial, points 14
6.9
Stiffness to Weight: Bending, points 52
18
Strength to Weight: Axial, points 35
10
Strength to Weight: Bending, points 41
12
Thermal Diffusivity, mm2/s 37
23
Thermal Shock Resistance, points 14
12

Alloy Composition

Aluminum (Al), % 87.9 to 90.5
0 to 0.0050
Antimony (Sb), % 0
0 to 0.2
Copper (Cu), % 0 to 0.25
86 to 89
Iron (Fe), % 0 to 0.3
0 to 0.2
Lead (Pb), % 0
0 to 0.3
Magnesium (Mg), % 9.5 to 10.6
0
Manganese (Mn), % 0 to 0.15
0
Nickel (Ni), % 0
0 to 1.0
Phosphorus (P), % 0
0 to 1.5
Silicon (Si), % 0 to 0.25
0 to 0.0050
Sulfur (S), % 0
0 to 0.050
Tin (Sn), % 0
9.0 to 11
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 0.15
1.0 to 3.0
Residuals, % 0
0 to 0.3