MakeItFrom.com
Menu (ESC)

535.0 Aluminum vs. A413.0 Aluminum

Both 535.0 aluminum and A413.0 aluminum are aluminum alloys. Both are furnished in the as-fabricated (no temper or treatment) condition. They have 86% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 535.0 aluminum and the bottom bar is A413.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 70
80
Elastic (Young's, Tensile) Modulus, GPa 67
73
Elongation at Break, % 10
3.5
Fatigue Strength, MPa 70
130
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 25
27
Shear Strength, MPa 190
170
Tensile Strength: Ultimate (UTS), MPa 270
240
Tensile Strength: Yield (Proof), MPa 140
130

Thermal Properties

Latent Heat of Fusion, J/g 390
570
Maximum Temperature: Mechanical, °C 170
170
Melting Completion (Liquidus), °C 630
590
Melting Onset (Solidus), °C 570
580
Specific Heat Capacity, J/kg-K 910
900
Thermal Conductivity, W/m-K 100
120
Thermal Expansion, µm/m-K 24
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 23
31
Electrical Conductivity: Equal Weight (Specific), % IACS 79
110

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.6
2.6
Embodied Carbon, kg CO2/kg material 9.4
7.6
Embodied Energy, MJ/kg 160
140
Embodied Water, L/kg 1180
1040

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24
7.1
Resilience: Unit (Modulus of Resilience), kJ/m3 150
120
Stiffness to Weight: Axial, points 14
16
Stiffness to Weight: Bending, points 51
54
Strength to Weight: Axial, points 28
25
Strength to Weight: Bending, points 35
33
Thermal Diffusivity, mm2/s 42
52
Thermal Shock Resistance, points 12
11

Alloy Composition

Aluminum (Al), % 91.5 to 93.6
82.9 to 89
Beryllium (Be), % 0.0030 to 0.0070
0
Boron (B), % 0 to 0.0050
0
Copper (Cu), % 0 to 0.050
0 to 1.0
Iron (Fe), % 0 to 0.15
0 to 1.3
Magnesium (Mg), % 6.2 to 7.5
0 to 0.1
Manganese (Mn), % 0.1 to 0.25
0 to 0.35
Nickel (Ni), % 0
0 to 0.5
Silicon (Si), % 0 to 0.15
11 to 13
Tin (Sn), % 0
0 to 0.15
Titanium (Ti), % 0.1 to 0.25
0
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0
0 to 0.25