MakeItFrom.com
Menu (ESC)

535.0 Aluminum vs. ACI-ASTM CE30 Steel

535.0 aluminum belongs to the aluminum alloys classification, while ACI-ASTM CE30 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 535.0 aluminum and the bottom bar is ACI-ASTM CE30 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 70
180
Elastic (Young's, Tensile) Modulus, GPa 67
200
Elongation at Break, % 10
11
Fatigue Strength, MPa 70
170
Poisson's Ratio 0.33
0.27
Shear Modulus, GPa 25
79
Tensile Strength: Ultimate (UTS), MPa 270
630
Tensile Strength: Yield (Proof), MPa 140
310

Thermal Properties

Latent Heat of Fusion, J/g 390
310
Maximum Temperature: Mechanical, °C 170
1100
Melting Completion (Liquidus), °C 630
1410
Melting Onset (Solidus), °C 570
1360
Specific Heat Capacity, J/kg-K 910
490
Thermal Conductivity, W/m-K 100
14
Thermal Expansion, µm/m-K 24
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 23
2.1
Electrical Conductivity: Equal Weight (Specific), % IACS 79
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
19
Density, g/cm3 2.6
7.7
Embodied Carbon, kg CO2/kg material 9.4
3.4
Embodied Energy, MJ/kg 160
49
Embodied Water, L/kg 1180
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24
59
Resilience: Unit (Modulus of Resilience), kJ/m3 150
240
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 51
25
Strength to Weight: Axial, points 28
23
Strength to Weight: Bending, points 35
21
Thermal Diffusivity, mm2/s 42
3.6
Thermal Shock Resistance, points 12
13

Alloy Composition

Aluminum (Al), % 91.5 to 93.6
0
Beryllium (Be), % 0.0030 to 0.0070
0
Boron (B), % 0 to 0.0050
0
Carbon (C), % 0
0 to 0.3
Chromium (Cr), % 0
26 to 30
Copper (Cu), % 0 to 0.050
0
Iron (Fe), % 0 to 0.15
55.1 to 66
Magnesium (Mg), % 6.2 to 7.5
0
Manganese (Mn), % 0.1 to 0.25
0 to 1.5
Nickel (Ni), % 0
8.0 to 11
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.15
0 to 2.0
Sulfur (S), % 0
0 to 0.040
Titanium (Ti), % 0.1 to 0.25
0
Residuals, % 0 to 0.15
0