MakeItFrom.com
Menu (ESC)

535.0 Aluminum vs. AISI 310S Stainless Steel

535.0 aluminum belongs to the aluminum alloys classification, while AISI 310S stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 535.0 aluminum and the bottom bar is AISI 310S stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 70
170 to 210
Elastic (Young's, Tensile) Modulus, GPa 67
200
Elongation at Break, % 10
34 to 44
Fatigue Strength, MPa 70
250 to 280
Poisson's Ratio 0.33
0.27
Shear Modulus, GPa 25
79
Shear Strength, MPa 190
420 to 470
Tensile Strength: Ultimate (UTS), MPa 270
600 to 710
Tensile Strength: Yield (Proof), MPa 140
270 to 350

Thermal Properties

Latent Heat of Fusion, J/g 390
310
Maximum Temperature: Mechanical, °C 170
1100
Melting Completion (Liquidus), °C 630
1450
Melting Onset (Solidus), °C 570
1400
Specific Heat Capacity, J/kg-K 910
480
Thermal Conductivity, W/m-K 100
16
Thermal Expansion, µm/m-K 24
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 23
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 79
2.3

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
25
Density, g/cm3 2.6
7.9
Embodied Carbon, kg CO2/kg material 9.4
4.3
Embodied Energy, MJ/kg 160
61
Embodied Water, L/kg 1180
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24
200 to 220
Resilience: Unit (Modulus of Resilience), kJ/m3 150
190 to 310
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 51
25
Strength to Weight: Axial, points 28
21 to 25
Strength to Weight: Bending, points 35
20 to 22
Thermal Diffusivity, mm2/s 42
4.1
Thermal Shock Resistance, points 12
14 to 16

Alloy Composition

Aluminum (Al), % 91.5 to 93.6
0
Beryllium (Be), % 0.0030 to 0.0070
0
Boron (B), % 0 to 0.0050
0
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0
24 to 26
Copper (Cu), % 0 to 0.050
0
Iron (Fe), % 0 to 0.15
48.3 to 57
Magnesium (Mg), % 6.2 to 7.5
0
Manganese (Mn), % 0.1 to 0.25
0 to 2.0
Nickel (Ni), % 0
19 to 22
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0 to 0.15
0 to 1.5
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0.1 to 0.25
0
Residuals, % 0 to 0.15
0