MakeItFrom.com
Menu (ESC)

535.0 Aluminum vs. ASTM A182 Grade F911

535.0 aluminum belongs to the aluminum alloys classification, while ASTM A182 grade F911 belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 535.0 aluminum and the bottom bar is ASTM A182 grade F911.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 70
220
Elastic (Young's, Tensile) Modulus, GPa 67
190
Elongation at Break, % 10
20
Fatigue Strength, MPa 70
350
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 25
76
Shear Strength, MPa 190
430
Tensile Strength: Ultimate (UTS), MPa 270
690
Tensile Strength: Yield (Proof), MPa 140
500

Thermal Properties

Latent Heat of Fusion, J/g 390
270
Maximum Temperature: Mechanical, °C 170
600
Melting Completion (Liquidus), °C 630
1480
Melting Onset (Solidus), °C 570
1440
Specific Heat Capacity, J/kg-K 910
470
Thermal Conductivity, W/m-K 100
26
Thermal Expansion, µm/m-K 24
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 23
9.2
Electrical Conductivity: Equal Weight (Specific), % IACS 79
10

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.6
7.9
Embodied Carbon, kg CO2/kg material 9.4
2.8
Embodied Energy, MJ/kg 160
40
Embodied Water, L/kg 1180
90

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24
130
Resilience: Unit (Modulus of Resilience), kJ/m3 150
650
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 51
24
Strength to Weight: Axial, points 28
24
Strength to Weight: Bending, points 35
22
Thermal Diffusivity, mm2/s 42
6.9
Thermal Shock Resistance, points 12
19

Alloy Composition

Aluminum (Al), % 91.5 to 93.6
0 to 0.020
Beryllium (Be), % 0.0030 to 0.0070
0
Boron (B), % 0 to 0.0050
0.00030 to 0.0060
Carbon (C), % 0
0.090 to 0.13
Chromium (Cr), % 0
8.5 to 9.5
Copper (Cu), % 0 to 0.050
0
Iron (Fe), % 0 to 0.15
86.2 to 88.9
Magnesium (Mg), % 6.2 to 7.5
0
Manganese (Mn), % 0.1 to 0.25
0.3 to 0.6
Molybdenum (Mo), % 0
0.9 to 1.1
Nickel (Ni), % 0
0 to 0.4
Niobium (Nb), % 0
0.060 to 0.1
Nitrogen (N), % 0
0.040 to 0.090
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0 to 0.15
0.1 to 0.5
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0.1 to 0.25
0 to 0.010
Tungsten (W), % 0
0.9 to 1.1
Vanadium (V), % 0
0.18 to 0.25
Zirconium (Zr), % 0
0 to 0.010
Residuals, % 0 to 0.15
0