MakeItFrom.com
Menu (ESC)

535.0 Aluminum vs. ASTM A369 Grade FP9

535.0 aluminum belongs to the aluminum alloys classification, while ASTM A369 grade FP9 belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 535.0 aluminum and the bottom bar is ASTM A369 grade FP9.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 70
140
Elastic (Young's, Tensile) Modulus, GPa 67
190
Elongation at Break, % 10
20
Fatigue Strength, MPa 70
160
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 25
75
Shear Strength, MPa 190
300
Tensile Strength: Ultimate (UTS), MPa 270
470
Tensile Strength: Yield (Proof), MPa 140
240

Thermal Properties

Latent Heat of Fusion, J/g 390
270
Maximum Temperature: Mechanical, °C 170
600
Melting Completion (Liquidus), °C 630
1450
Melting Onset (Solidus), °C 570
1410
Specific Heat Capacity, J/kg-K 910
480
Thermal Conductivity, W/m-K 100
26
Thermal Expansion, µm/m-K 24
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 23
9.0
Electrical Conductivity: Equal Weight (Specific), % IACS 79
10

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
6.5
Density, g/cm3 2.6
7.8
Embodied Carbon, kg CO2/kg material 9.4
2.0
Embodied Energy, MJ/kg 160
28
Embodied Water, L/kg 1180
87

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24
80
Resilience: Unit (Modulus of Resilience), kJ/m3 150
140
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 51
25
Strength to Weight: Axial, points 28
17
Strength to Weight: Bending, points 35
17
Thermal Diffusivity, mm2/s 42
6.9
Thermal Shock Resistance, points 12
13

Alloy Composition

Aluminum (Al), % 91.5 to 93.6
0
Beryllium (Be), % 0.0030 to 0.0070
0
Boron (B), % 0 to 0.0050
0
Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0
8.0 to 10
Copper (Cu), % 0 to 0.050
0
Iron (Fe), % 0 to 0.15
87.1 to 90.3
Magnesium (Mg), % 6.2 to 7.5
0
Manganese (Mn), % 0.1 to 0.25
0.3 to 0.6
Molybdenum (Mo), % 0
0.9 to 1.1
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.15
0.5 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0.1 to 0.25
0
Residuals, % 0 to 0.15
0