MakeItFrom.com
Menu (ESC)

535.0 Aluminum vs. ASTM A387 Grade 22 Steel

535.0 aluminum belongs to the aluminum alloys classification, while ASTM A387 grade 22 steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 535.0 aluminum and the bottom bar is ASTM A387 grade 22 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 70
150 to 180
Elastic (Young's, Tensile) Modulus, GPa 67
190
Elongation at Break, % 10
21
Fatigue Strength, MPa 70
160 to 240
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 25
74
Shear Strength, MPa 190
300 to 380
Tensile Strength: Ultimate (UTS), MPa 270
480 to 600
Tensile Strength: Yield (Proof), MPa 140
230 to 350

Thermal Properties

Latent Heat of Fusion, J/g 390
260
Maximum Temperature: Mechanical, °C 170
460
Melting Completion (Liquidus), °C 630
1470
Melting Onset (Solidus), °C 570
1430
Specific Heat Capacity, J/kg-K 910
470
Thermal Conductivity, W/m-K 100
40
Thermal Expansion, µm/m-K 24
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 23
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 79
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
3.8
Density, g/cm3 2.6
7.9
Embodied Carbon, kg CO2/kg material 9.4
1.7
Embodied Energy, MJ/kg 160
23
Embodied Water, L/kg 1180
58

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24
85 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 150
140 to 320
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 51
24
Strength to Weight: Axial, points 28
17 to 21
Strength to Weight: Bending, points 35
17 to 20
Thermal Diffusivity, mm2/s 42
11
Thermal Shock Resistance, points 12
14 to 17

Alloy Composition

Aluminum (Al), % 91.5 to 93.6
0
Beryllium (Be), % 0.0030 to 0.0070
0
Boron (B), % 0 to 0.0050
0
Carbon (C), % 0
0.050 to 0.15
Chromium (Cr), % 0
2.0 to 2.5
Copper (Cu), % 0 to 0.050
0
Iron (Fe), % 0 to 0.15
95.1 to 96.8
Magnesium (Mg), % 6.2 to 7.5
0
Manganese (Mn), % 0.1 to 0.25
0.3 to 0.6
Molybdenum (Mo), % 0
0.9 to 1.1
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0 to 0.15
0 to 0.5
Sulfur (S), % 0
0 to 0.025
Titanium (Ti), % 0.1 to 0.25
0
Residuals, % 0 to 0.15
0