MakeItFrom.com
Menu (ESC)

535.0 Aluminum vs. AWS E410

535.0 aluminum belongs to the aluminum alloys classification, while AWS E410 belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 535.0 aluminum and the bottom bar is AWS E410.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 67
190
Elongation at Break, % 10
23
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 25
76
Tensile Strength: Ultimate (UTS), MPa 270
580
Tensile Strength: Yield (Proof), MPa 140
440

Thermal Properties

Latent Heat of Fusion, J/g 390
270
Melting Completion (Liquidus), °C 630
1450
Melting Onset (Solidus), °C 570
1400
Specific Heat Capacity, J/kg-K 910
480
Thermal Conductivity, W/m-K 100
28
Thermal Expansion, µm/m-K 24
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 23
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 79
3.4

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
7.5
Density, g/cm3 2.6
7.8
Embodied Carbon, kg CO2/kg material 9.4
2.0
Embodied Energy, MJ/kg 160
28
Embodied Water, L/kg 1180
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24
120
Resilience: Unit (Modulus of Resilience), kJ/m3 150
500
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 51
25
Strength to Weight: Axial, points 28
21
Strength to Weight: Bending, points 35
20
Thermal Diffusivity, mm2/s 42
7.5
Thermal Shock Resistance, points 12
16

Alloy Composition

Aluminum (Al), % 91.5 to 93.6
0
Beryllium (Be), % 0.0030 to 0.0070
0
Boron (B), % 0 to 0.0050
0
Carbon (C), % 0
0 to 0.12
Chromium (Cr), % 0
11 to 13.5
Copper (Cu), % 0 to 0.050
0 to 0.75
Iron (Fe), % 0 to 0.15
82.2 to 89
Magnesium (Mg), % 6.2 to 7.5
0
Manganese (Mn), % 0.1 to 0.25
0 to 1.0
Molybdenum (Mo), % 0
0 to 0.75
Nickel (Ni), % 0
0 to 0.7
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.15
0 to 0.9
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0.1 to 0.25
0
Residuals, % 0 to 0.15
0