MakeItFrom.com
Menu (ESC)

535.0 Aluminum vs. EN 1.0490 Steel

535.0 aluminum belongs to the aluminum alloys classification, while EN 1.0490 steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 535.0 aluminum and the bottom bar is EN 1.0490 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 70
130
Elastic (Young's, Tensile) Modulus, GPa 67
190
Elongation at Break, % 10
26
Fatigue Strength, MPa 70
210
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 25
73
Shear Strength, MPa 190
280
Tensile Strength: Ultimate (UTS), MPa 270
440
Tensile Strength: Yield (Proof), MPa 140
280

Thermal Properties

Latent Heat of Fusion, J/g 390
250
Maximum Temperature: Mechanical, °C 170
400
Melting Completion (Liquidus), °C 630
1460
Melting Onset (Solidus), °C 570
1420
Specific Heat Capacity, J/kg-K 910
470
Thermal Conductivity, W/m-K 100
47
Thermal Expansion, µm/m-K 24
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 23
7.4
Electrical Conductivity: Equal Weight (Specific), % IACS 79
8.5

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
2.4
Density, g/cm3 2.6
7.8
Embodied Carbon, kg CO2/kg material 9.4
1.6
Embodied Energy, MJ/kg 160
21
Embodied Water, L/kg 1180
49

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24
100
Resilience: Unit (Modulus of Resilience), kJ/m3 150
210
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 51
24
Strength to Weight: Axial, points 28
16
Strength to Weight: Bending, points 35
16
Thermal Diffusivity, mm2/s 42
13
Thermal Shock Resistance, points 12
14

Alloy Composition

Aluminum (Al), % 91.5 to 93.6
0 to 0.015
Beryllium (Be), % 0.0030 to 0.0070
0
Boron (B), % 0 to 0.0050
0
Carbon (C), % 0
0 to 0.2
Chromium (Cr), % 0
0 to 0.35
Copper (Cu), % 0 to 0.050
0 to 0.6
Iron (Fe), % 0 to 0.15
96 to 99.55
Magnesium (Mg), % 6.2 to 7.5
0
Manganese (Mn), % 0.1 to 0.25
0.45 to 1.6
Molybdenum (Mo), % 0
0 to 0.13
Nickel (Ni), % 0
0 to 0.35
Niobium (Nb), % 0
0 to 0.060
Nitrogen (N), % 0
0 to 0.017
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0 to 0.15
0 to 0.45
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0.1 to 0.25
0 to 0.060
Vanadium (V), % 0
0 to 0.070
Residuals, % 0 to 0.15
0