MakeItFrom.com
Menu (ESC)

535.0 Aluminum vs. EN 1.1219 Steel

535.0 aluminum belongs to the aluminum alloys classification, while EN 1.1219 steel belongs to the iron alloys. There are 25 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 535.0 aluminum and the bottom bar is EN 1.1219 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 70
200 to 220
Elastic (Young's, Tensile) Modulus, GPa 67
190
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 25
72
Tensile Strength: Ultimate (UTS), MPa 270
700 to 770

Thermal Properties

Latent Heat of Fusion, J/g 390
250
Maximum Temperature: Mechanical, °C 170
400
Melting Completion (Liquidus), °C 630
1460
Melting Onset (Solidus), °C 570
1410
Specific Heat Capacity, J/kg-K 910
470
Thermal Conductivity, W/m-K 100
51
Thermal Expansion, µm/m-K 24
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 23
7.1
Electrical Conductivity: Equal Weight (Specific), % IACS 79
8.1

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
1.9
Density, g/cm3 2.6
7.8
Embodied Carbon, kg CO2/kg material 9.4
1.4
Embodied Energy, MJ/kg 160
19
Embodied Water, L/kg 1180
47

Common Calculations

Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 51
24
Strength to Weight: Axial, points 28
25 to 27
Strength to Weight: Bending, points 35
22 to 24
Thermal Diffusivity, mm2/s 42
14
Thermal Shock Resistance, points 12
22 to 25

Alloy Composition

Aluminum (Al), % 91.5 to 93.6
0 to 0.050
Beryllium (Be), % 0.0030 to 0.0070
0
Boron (B), % 0 to 0.0050
0
Carbon (C), % 0
0.52 to 0.6
Copper (Cu), % 0 to 0.050
0 to 0.3
Iron (Fe), % 0 to 0.15
98.3 to 99.4
Magnesium (Mg), % 6.2 to 7.5
0
Manganese (Mn), % 0.1 to 0.25
0.6 to 0.9
Oxygen (O), % 0
0 to 0.0020
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0 to 0.15
0 to 0.4
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0.1 to 0.25
0
Residuals, % 0 to 0.15
0