MakeItFrom.com
Menu (ESC)

535.0 Aluminum vs. EN 1.4516 Stainless Steel

535.0 aluminum belongs to the aluminum alloys classification, while EN 1.4516 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 535.0 aluminum and the bottom bar is EN 1.4516 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 67
190
Elongation at Break, % 10
23
Fatigue Strength, MPa 70
210
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 25
76
Shear Strength, MPa 190
350
Tensile Strength: Ultimate (UTS), MPa 270
550
Tensile Strength: Yield (Proof), MPa 140
320

Thermal Properties

Latent Heat of Fusion, J/g 390
270
Maximum Temperature: Mechanical, °C 170
720
Melting Completion (Liquidus), °C 630
1450
Melting Onset (Solidus), °C 570
1400
Specific Heat Capacity, J/kg-K 910
480
Thermal Conductivity, W/m-K 100
30
Thermal Expansion, µm/m-K 24
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 23
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 79
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
7.0
Density, g/cm3 2.6
7.8
Embodied Carbon, kg CO2/kg material 9.4
2.0
Embodied Energy, MJ/kg 160
28
Embodied Water, L/kg 1180
97

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24
110
Resilience: Unit (Modulus of Resilience), kJ/m3 150
260
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 51
25
Strength to Weight: Axial, points 28
20
Strength to Weight: Bending, points 35
19
Thermal Diffusivity, mm2/s 42
8.1
Thermal Shock Resistance, points 12
20

Alloy Composition

Aluminum (Al), % 91.5 to 93.6
0
Beryllium (Be), % 0.0030 to 0.0070
0
Boron (B), % 0 to 0.0050
0
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0
10.5 to 12.5
Copper (Cu), % 0 to 0.050
0
Iron (Fe), % 0 to 0.15
83.3 to 89
Magnesium (Mg), % 6.2 to 7.5
0
Manganese (Mn), % 0.1 to 0.25
0 to 1.5
Nickel (Ni), % 0
0.5 to 1.5
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.15
0 to 0.7
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0.1 to 0.25
0.050 to 0.35
Residuals, % 0 to 0.15
0