MakeItFrom.com
Menu (ESC)

535.0 Aluminum vs. EN 1.4864 Stainless Steel

535.0 aluminum belongs to the aluminum alloys classification, while EN 1.4864 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 535.0 aluminum and the bottom bar is EN 1.4864 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 70
190
Elastic (Young's, Tensile) Modulus, GPa 67
190
Elongation at Break, % 10
33
Fatigue Strength, MPa 70
200
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 25
75
Shear Strength, MPa 190
430
Tensile Strength: Ultimate (UTS), MPa 270
650
Tensile Strength: Yield (Proof), MPa 140
260

Thermal Properties

Latent Heat of Fusion, J/g 390
310
Maximum Temperature: Mechanical, °C 170
1100
Melting Completion (Liquidus), °C 630
1390
Melting Onset (Solidus), °C 570
1340
Specific Heat Capacity, J/kg-K 910
480
Thermal Conductivity, W/m-K 100
13
Thermal Expansion, µm/m-K 24
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 23
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 79
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
30
Density, g/cm3 2.6
8.0
Embodied Carbon, kg CO2/kg material 9.4
5.3
Embodied Energy, MJ/kg 160
75
Embodied Water, L/kg 1180
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24
170
Resilience: Unit (Modulus of Resilience), kJ/m3 150
170
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 51
24
Strength to Weight: Axial, points 28
23
Strength to Weight: Bending, points 35
21
Thermal Diffusivity, mm2/s 42
3.3
Thermal Shock Resistance, points 12
17

Alloy Composition

Aluminum (Al), % 91.5 to 93.6
0
Beryllium (Be), % 0.0030 to 0.0070
0
Boron (B), % 0 to 0.0050
0
Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0
15 to 17
Copper (Cu), % 0 to 0.050
0
Iron (Fe), % 0 to 0.15
41.7 to 51
Magnesium (Mg), % 6.2 to 7.5
0
Manganese (Mn), % 0.1 to 0.25
0 to 2.0
Nickel (Ni), % 0
33 to 37
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0 to 0.15
1.0 to 2.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0.1 to 0.25
0
Residuals, % 0 to 0.15
0