MakeItFrom.com
Menu (ESC)

535.0 Aluminum vs. EN 1.7077 Steel

535.0 aluminum belongs to the aluminum alloys classification, while EN 1.7077 steel belongs to the iron alloys. There are 25 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 535.0 aluminum and the bottom bar is EN 1.7077 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 70
150 to 180
Elastic (Young's, Tensile) Modulus, GPa 67
190
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 25
73
Tensile Strength: Ultimate (UTS), MPa 270
490 to 1750

Thermal Properties

Latent Heat of Fusion, J/g 390
250
Maximum Temperature: Mechanical, °C 170
420
Melting Completion (Liquidus), °C 630
1460
Melting Onset (Solidus), °C 570
1420
Specific Heat Capacity, J/kg-K 910
470
Thermal Conductivity, W/m-K 100
45
Thermal Expansion, µm/m-K 24
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 23
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 79
8.4

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
2.3
Density, g/cm3 2.6
7.8
Embodied Carbon, kg CO2/kg material 9.4
1.4
Embodied Energy, MJ/kg 160
19
Embodied Water, L/kg 1180
51

Common Calculations

Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 51
24
Strength to Weight: Axial, points 28
17 to 62
Strength to Weight: Bending, points 35
18 to 41
Thermal Diffusivity, mm2/s 42
12
Thermal Shock Resistance, points 12
14 to 51

Alloy Composition

Aluminum (Al), % 91.5 to 93.6
0
Beryllium (Be), % 0.0030 to 0.0070
0
Boron (B), % 0 to 0.0050
0.00080 to 0.0050
Carbon (C), % 0
0.34 to 0.38
Chromium (Cr), % 0
0.9 to 1.2
Copper (Cu), % 0 to 0.050
0 to 0.25
Iron (Fe), % 0 to 0.15
96.8 to 98.1
Magnesium (Mg), % 6.2 to 7.5
0
Manganese (Mn), % 0.1 to 0.25
0.7 to 1.0
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0 to 0.15
0 to 0.3
Sulfur (S), % 0
0 to 0.025
Titanium (Ti), % 0.1 to 0.25
0
Residuals, % 0 to 0.15
0