MakeItFrom.com
Menu (ESC)

535.0 Aluminum vs. CC382H Copper-nickel

535.0 aluminum belongs to the aluminum alloys classification, while CC382H copper-nickel belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 535.0 aluminum and the bottom bar is CC382H copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 70
130
Elastic (Young's, Tensile) Modulus, GPa 67
140
Elongation at Break, % 10
20
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 25
53
Tensile Strength: Ultimate (UTS), MPa 270
490
Tensile Strength: Yield (Proof), MPa 140
290

Thermal Properties

Latent Heat of Fusion, J/g 390
240
Maximum Temperature: Mechanical, °C 170
260
Melting Completion (Liquidus), °C 630
1180
Melting Onset (Solidus), °C 570
1120
Specific Heat Capacity, J/kg-K 910
410
Thermal Conductivity, W/m-K 100
30
Thermal Expansion, µm/m-K 24
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 23
5.5
Electrical Conductivity: Equal Weight (Specific), % IACS 79
5.6

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
41
Density, g/cm3 2.6
8.9
Embodied Carbon, kg CO2/kg material 9.4
5.2
Embodied Energy, MJ/kg 160
76
Embodied Water, L/kg 1180
290

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24
85
Resilience: Unit (Modulus of Resilience), kJ/m3 150
290
Stiffness to Weight: Axial, points 14
8.8
Stiffness to Weight: Bending, points 51
20
Strength to Weight: Axial, points 28
15
Strength to Weight: Bending, points 35
16
Thermal Diffusivity, mm2/s 42
8.2
Thermal Shock Resistance, points 12
16

Alloy Composition

Aluminum (Al), % 91.5 to 93.6
0 to 0.010
Beryllium (Be), % 0.0030 to 0.0070
0
Bismuth (Bi), % 0
0 to 0.0020
Boron (B), % 0 to 0.0050
0 to 0.010
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
1.5 to 2.0
Copper (Cu), % 0 to 0.050
62.8 to 68.4
Iron (Fe), % 0 to 0.15
0.5 to 1.0
Lead (Pb), % 0
0 to 0.0050
Magnesium (Mg), % 6.2 to 7.5
0 to 0.010
Manganese (Mn), % 0.1 to 0.25
0.5 to 1.0
Nickel (Ni), % 0
29 to 32
Phosphorus (P), % 0
0 to 0.010
Selenium (Se), % 0
0 to 0.0050
Silicon (Si), % 0 to 0.15
0.15 to 0.5
Sulfur (S), % 0
0 to 0.010
Tellurium (Te), % 0
0 to 0.0050
Titanium (Ti), % 0.1 to 0.25
0 to 0.25
Zinc (Zn), % 0
0 to 0.2
Zirconium (Zr), % 0
0 to 0.15
Residuals, % 0 to 0.15
0