MakeItFrom.com
Menu (ESC)

535.0 Aluminum vs. Nickel 30

535.0 aluminum belongs to the aluminum alloys classification, while nickel 30 belongs to the nickel alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 535.0 aluminum and the bottom bar is nickel 30.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 67
210
Elongation at Break, % 10
34
Fatigue Strength, MPa 70
200
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 25
82
Shear Strength, MPa 190
440
Tensile Strength: Ultimate (UTS), MPa 270
660
Tensile Strength: Yield (Proof), MPa 140
270

Thermal Properties

Latent Heat of Fusion, J/g 390
320
Maximum Temperature: Mechanical, °C 170
1020
Melting Completion (Liquidus), °C 630
1480
Melting Onset (Solidus), °C 570
1430
Specific Heat Capacity, J/kg-K 910
450
Thermal Conductivity, W/m-K 100
10
Thermal Expansion, µm/m-K 24
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 23
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 79
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
60
Density, g/cm3 2.6
8.5
Embodied Carbon, kg CO2/kg material 9.4
9.4
Embodied Energy, MJ/kg 160
130
Embodied Water, L/kg 1180
290

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24
180
Resilience: Unit (Modulus of Resilience), kJ/m3 150
180
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 51
23
Strength to Weight: Axial, points 28
22
Strength to Weight: Bending, points 35
20
Thermal Diffusivity, mm2/s 42
2.7
Thermal Shock Resistance, points 12
18

Alloy Composition

Aluminum (Al), % 91.5 to 93.6
0
Beryllium (Be), % 0.0030 to 0.0070
0
Boron (B), % 0 to 0.0050
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
28 to 31.5
Cobalt (Co), % 0
0 to 5.0
Copper (Cu), % 0 to 0.050
1.0 to 2.4
Iron (Fe), % 0 to 0.15
13 to 17
Magnesium (Mg), % 6.2 to 7.5
0
Manganese (Mn), % 0.1 to 0.25
0 to 0.030
Molybdenum (Mo), % 0
4.0 to 6.0
Nickel (Ni), % 0
30.2 to 52.2
Niobium (Nb), % 0
0.3 to 1.5
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.15
0 to 0.8
Sulfur (S), % 0
0 to 0.020
Titanium (Ti), % 0.1 to 0.25
0
Tungsten (W), % 0
1.5 to 4.0
Residuals, % 0 to 0.15
0