MakeItFrom.com
Menu (ESC)

535.0 Aluminum vs. Nickel 617

535.0 aluminum belongs to the aluminum alloys classification, while nickel 617 belongs to the nickel alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 535.0 aluminum and the bottom bar is nickel 617.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 67
210
Elongation at Break, % 10
40
Fatigue Strength, MPa 70
220
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 25
80
Shear Strength, MPa 190
510
Tensile Strength: Ultimate (UTS), MPa 270
740
Tensile Strength: Yield (Proof), MPa 140
280

Thermal Properties

Latent Heat of Fusion, J/g 390
330
Maximum Temperature: Mechanical, °C 170
1010
Melting Completion (Liquidus), °C 630
1380
Melting Onset (Solidus), °C 570
1330
Specific Heat Capacity, J/kg-K 910
450
Thermal Conductivity, W/m-K 100
13
Thermal Expansion, µm/m-K 24
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 23
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 79
1.5

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
75
Density, g/cm3 2.6
8.5
Embodied Carbon, kg CO2/kg material 9.4
10
Embodied Energy, MJ/kg 160
140
Embodied Water, L/kg 1180
350

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24
230
Resilience: Unit (Modulus of Resilience), kJ/m3 150
190
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 51
23
Strength to Weight: Axial, points 28
24
Strength to Weight: Bending, points 35
21
Thermal Diffusivity, mm2/s 42
3.5
Thermal Shock Resistance, points 12
21

Alloy Composition

Aluminum (Al), % 91.5 to 93.6
0.8 to 1.5
Beryllium (Be), % 0.0030 to 0.0070
0
Boron (B), % 0 to 0.0050
0 to 0.0060
Carbon (C), % 0
0.050 to 0.15
Chromium (Cr), % 0
20 to 24
Cobalt (Co), % 0
10 to 15
Copper (Cu), % 0 to 0.050
0 to 0.5
Iron (Fe), % 0 to 0.15
0 to 3.0
Magnesium (Mg), % 6.2 to 7.5
0
Manganese (Mn), % 0.1 to 0.25
0 to 1.0
Molybdenum (Mo), % 0
8.0 to 10
Nickel (Ni), % 0
44.5 to 62
Silicon (Si), % 0 to 0.15
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0.1 to 0.25
0
Residuals, % 0 to 0.15
0