MakeItFrom.com
Menu (ESC)

535.0 Aluminum vs. C35600 Brass

535.0 aluminum belongs to the aluminum alloys classification, while C35600 brass belongs to the copper alloys. There are 24 material properties with values for both materials. Properties with values for just one material (10, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 535.0 aluminum and the bottom bar is C35600 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 67
100
Poisson's Ratio 0.33
0.31
Shear Modulus, GPa 25
39
Tensile Strength: Ultimate (UTS), MPa 270
340 to 650

Thermal Properties

Latent Heat of Fusion, J/g 390
170
Maximum Temperature: Mechanical, °C 170
120
Melting Completion (Liquidus), °C 630
900
Melting Onset (Solidus), °C 570
890
Specific Heat Capacity, J/kg-K 910
380
Thermal Conductivity, W/m-K 100
120
Thermal Expansion, µm/m-K 24
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 23
26
Electrical Conductivity: Equal Weight (Specific), % IACS 79
29

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
23
Density, g/cm3 2.6
8.1
Embodied Carbon, kg CO2/kg material 9.4
2.6
Embodied Energy, MJ/kg 160
45
Embodied Water, L/kg 1180
320

Common Calculations

Stiffness to Weight: Axial, points 14
7.0
Stiffness to Weight: Bending, points 51
19
Strength to Weight: Axial, points 28
11 to 22
Strength to Weight: Bending, points 35
13 to 21
Thermal Diffusivity, mm2/s 42
38
Thermal Shock Resistance, points 12
11 to 22

Alloy Composition

Aluminum (Al), % 91.5 to 93.6
0
Beryllium (Be), % 0.0030 to 0.0070
0
Boron (B), % 0 to 0.0050
0
Copper (Cu), % 0 to 0.050
60 to 63
Iron (Fe), % 0 to 0.15
0 to 0.1
Lead (Pb), % 0
2.0 to 3.0
Magnesium (Mg), % 6.2 to 7.5
0
Manganese (Mn), % 0.1 to 0.25
0
Silicon (Si), % 0 to 0.15
0
Titanium (Ti), % 0.1 to 0.25
0
Zinc (Zn), % 0
33.4 to 38
Residuals, % 0
0 to 0.5