MakeItFrom.com
Menu (ESC)

535.0 Aluminum vs. C38000 Brass

535.0 aluminum belongs to the aluminum alloys classification, while C38000 brass belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 535.0 aluminum and the bottom bar is C38000 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 67
100
Elongation at Break, % 10
17
Poisson's Ratio 0.33
0.31
Shear Modulus, GPa 25
39
Shear Strength, MPa 190
230
Tensile Strength: Ultimate (UTS), MPa 270
380
Tensile Strength: Yield (Proof), MPa 140
120

Thermal Properties

Latent Heat of Fusion, J/g 390
170
Maximum Temperature: Mechanical, °C 170
110
Melting Completion (Liquidus), °C 630
800
Melting Onset (Solidus), °C 570
760
Specific Heat Capacity, J/kg-K 910
380
Thermal Conductivity, W/m-K 100
110
Thermal Expansion, µm/m-K 24
21

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
22
Density, g/cm3 2.6
8.0
Embodied Carbon, kg CO2/kg material 9.4
2.7
Embodied Energy, MJ/kg 160
46
Embodied Water, L/kg 1180
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24
50
Resilience: Unit (Modulus of Resilience), kJ/m3 150
74
Stiffness to Weight: Axial, points 14
7.1
Stiffness to Weight: Bending, points 51
19
Strength to Weight: Axial, points 28
13
Strength to Weight: Bending, points 35
14
Thermal Diffusivity, mm2/s 42
37
Thermal Shock Resistance, points 12
13

Alloy Composition

Aluminum (Al), % 91.5 to 93.6
0 to 0.5
Beryllium (Be), % 0.0030 to 0.0070
0
Boron (B), % 0 to 0.0050
0
Copper (Cu), % 0 to 0.050
55 to 60
Iron (Fe), % 0 to 0.15
0 to 0.35
Lead (Pb), % 0
1.5 to 2.5
Magnesium (Mg), % 6.2 to 7.5
0
Manganese (Mn), % 0.1 to 0.25
0
Silicon (Si), % 0 to 0.15
0
Tin (Sn), % 0
0 to 0.3
Titanium (Ti), % 0.1 to 0.25
0
Zinc (Zn), % 0
35.9 to 43.5
Residuals, % 0
0 to 0.5