MakeItFrom.com
Menu (ESC)

535.0 Aluminum vs. C71520 Copper-nickel

535.0 aluminum belongs to the aluminum alloys classification, while C71520 copper-nickel belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 535.0 aluminum and the bottom bar is C71520 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 67
140
Elongation at Break, % 10
10 to 45
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 25
51
Shear Strength, MPa 190
250 to 340
Tensile Strength: Ultimate (UTS), MPa 270
370 to 570
Tensile Strength: Yield (Proof), MPa 140
140 to 430

Thermal Properties

Latent Heat of Fusion, J/g 390
230
Maximum Temperature: Mechanical, °C 170
260
Melting Completion (Liquidus), °C 630
1170
Melting Onset (Solidus), °C 570
1120
Specific Heat Capacity, J/kg-K 910
400
Thermal Conductivity, W/m-K 100
32
Thermal Expansion, µm/m-K 24
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 23
5.7
Electrical Conductivity: Equal Weight (Specific), % IACS 79
5.8

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
40
Density, g/cm3 2.6
8.9
Embodied Carbon, kg CO2/kg material 9.4
5.0
Embodied Energy, MJ/kg 160
73
Embodied Water, L/kg 1180
280

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24
54 to 130
Resilience: Unit (Modulus of Resilience), kJ/m3 150
67 to 680
Stiffness to Weight: Axial, points 14
8.6
Stiffness to Weight: Bending, points 51
19
Strength to Weight: Axial, points 28
12 to 18
Strength to Weight: Bending, points 35
13 to 17
Thermal Diffusivity, mm2/s 42
8.9
Thermal Shock Resistance, points 12
12 to 19

Alloy Composition

Aluminum (Al), % 91.5 to 93.6
0
Beryllium (Be), % 0.0030 to 0.0070
0
Boron (B), % 0 to 0.0050
0
Carbon (C), % 0
0 to 0.050
Copper (Cu), % 0 to 0.050
65 to 71.6
Iron (Fe), % 0 to 0.15
0.4 to 1.0
Lead (Pb), % 0
0 to 0.020
Magnesium (Mg), % 6.2 to 7.5
0
Manganese (Mn), % 0.1 to 0.25
0 to 1.0
Nickel (Ni), % 0
28 to 33
Phosphorus (P), % 0
0 to 0.2
Silicon (Si), % 0 to 0.15
0
Sulfur (S), % 0
0 to 0.020
Titanium (Ti), % 0.1 to 0.25
0
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0
0 to 0.5