MakeItFrom.com
Menu (ESC)

535.0 Aluminum vs. C93200 Bronze

535.0 aluminum belongs to the aluminum alloys classification, while C93200 bronze belongs to the copper alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 535.0 aluminum and the bottom bar is C93200 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 67
100
Elongation at Break, % 10
20
Fatigue Strength, MPa 70
110
Poisson's Ratio 0.33
0.35
Shear Modulus, GPa 25
38
Tensile Strength: Ultimate (UTS), MPa 270
240
Tensile Strength: Yield (Proof), MPa 140
130

Thermal Properties

Latent Heat of Fusion, J/g 390
180
Maximum Temperature: Mechanical, °C 170
160
Melting Completion (Liquidus), °C 630
980
Melting Onset (Solidus), °C 570
850
Solidification (Pattern Maker's) Shrinkage, % 1.3
1.8
Specific Heat Capacity, J/kg-K 910
360
Thermal Conductivity, W/m-K 100
59
Thermal Expansion, µm/m-K 24
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 23
12
Electrical Conductivity: Equal Weight (Specific), % IACS 79
12

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
32
Density, g/cm3 2.6
8.8
Embodied Carbon, kg CO2/kg material 9.4
3.2
Embodied Energy, MJ/kg 160
52
Embodied Water, L/kg 1180
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24
40
Resilience: Unit (Modulus of Resilience), kJ/m3 150
76
Stiffness to Weight: Axial, points 14
6.5
Stiffness to Weight: Bending, points 51
18
Strength to Weight: Axial, points 28
7.5
Strength to Weight: Bending, points 35
9.7
Thermal Diffusivity, mm2/s 42
18
Thermal Shock Resistance, points 12
9.3

Alloy Composition

Aluminum (Al), % 91.5 to 93.6
0 to 0.0050
Antimony (Sb), % 0
0 to 0.35
Beryllium (Be), % 0.0030 to 0.0070
0
Boron (B), % 0 to 0.0050
0
Copper (Cu), % 0 to 0.050
81 to 85
Iron (Fe), % 0 to 0.15
0 to 0.2
Lead (Pb), % 0
6.0 to 8.0
Magnesium (Mg), % 6.2 to 7.5
0
Manganese (Mn), % 0.1 to 0.25
0
Nickel (Ni), % 0
0 to 1.0
Phosphorus (P), % 0
0 to 1.5
Silicon (Si), % 0 to 0.15
0 to 0.0050
Sulfur (S), % 0
0 to 0.080
Tin (Sn), % 0
6.3 to 7.5
Titanium (Ti), % 0.1 to 0.25
0
Zinc (Zn), % 0
2.0 to 4.0
Residuals, % 0
0 to 1.0