MakeItFrom.com
Menu (ESC)

535.0 Aluminum vs. N06045 Nickel

535.0 aluminum belongs to the aluminum alloys classification, while N06045 nickel belongs to the nickel alloys. There are 26 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 535.0 aluminum and the bottom bar is N06045 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 67
200
Elongation at Break, % 10
37
Fatigue Strength, MPa 70
210
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 25
77
Shear Strength, MPa 190
470
Tensile Strength: Ultimate (UTS), MPa 270
690
Tensile Strength: Yield (Proof), MPa 140
270

Thermal Properties

Latent Heat of Fusion, J/g 390
350
Maximum Temperature: Mechanical, °C 170
1010
Melting Completion (Liquidus), °C 630
1350
Melting Onset (Solidus), °C 570
1300
Specific Heat Capacity, J/kg-K 910
480
Thermal Expansion, µm/m-K 24
13

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
42
Density, g/cm3 2.6
8.0
Embodied Carbon, kg CO2/kg material 9.4
6.9
Embodied Energy, MJ/kg 160
98
Embodied Water, L/kg 1180
250

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24
200
Resilience: Unit (Modulus of Resilience), kJ/m3 150
180
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 51
24
Strength to Weight: Axial, points 28
24
Strength to Weight: Bending, points 35
22
Thermal Shock Resistance, points 12
18

Alloy Composition

Aluminum (Al), % 91.5 to 93.6
0
Beryllium (Be), % 0.0030 to 0.0070
0
Boron (B), % 0 to 0.0050
0
Carbon (C), % 0
0.050 to 0.12
Cerium (Ce), % 0
0.030 to 0.090
Chromium (Cr), % 0
26 to 29
Copper (Cu), % 0 to 0.050
0 to 0.3
Iron (Fe), % 0 to 0.15
21 to 25
Magnesium (Mg), % 6.2 to 7.5
0
Manganese (Mn), % 0.1 to 0.25
0 to 1.0
Nickel (Ni), % 0
45 to 50.4
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0 to 0.15
2.5 to 3.0
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0.1 to 0.25
0
Residuals, % 0 to 0.15
0