MakeItFrom.com
Menu (ESC)

535.0 Aluminum vs. N08031 Stainless Steel

535.0 aluminum belongs to the aluminum alloys classification, while N08031 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 535.0 aluminum and the bottom bar is N08031 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 67
210
Elongation at Break, % 10
45
Fatigue Strength, MPa 70
290
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 25
81
Shear Strength, MPa 190
510
Tensile Strength: Ultimate (UTS), MPa 270
730
Tensile Strength: Yield (Proof), MPa 140
310

Thermal Properties

Latent Heat of Fusion, J/g 390
310
Maximum Temperature: Mechanical, °C 170
1100
Melting Completion (Liquidus), °C 630
1440
Melting Onset (Solidus), °C 570
1390
Specific Heat Capacity, J/kg-K 910
460
Thermal Conductivity, W/m-K 100
12
Thermal Expansion, µm/m-K 24
18

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
39
Density, g/cm3 2.6
8.1
Embodied Carbon, kg CO2/kg material 9.4
7.1
Embodied Energy, MJ/kg 160
96
Embodied Water, L/kg 1180
240

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24
270
Resilience: Unit (Modulus of Resilience), kJ/m3 150
230
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 51
24
Strength to Weight: Axial, points 28
25
Strength to Weight: Bending, points 35
22
Thermal Diffusivity, mm2/s 42
3.1
Thermal Shock Resistance, points 12
14

Alloy Composition

Aluminum (Al), % 91.5 to 93.6
0
Beryllium (Be), % 0.0030 to 0.0070
0
Boron (B), % 0 to 0.0050
0
Carbon (C), % 0
0 to 0.015
Chromium (Cr), % 0
26 to 28
Copper (Cu), % 0 to 0.050
1.0 to 1.4
Iron (Fe), % 0 to 0.15
29 to 36.9
Magnesium (Mg), % 6.2 to 7.5
0
Manganese (Mn), % 0.1 to 0.25
0 to 2.0
Molybdenum (Mo), % 0
6.0 to 7.0
Nickel (Ni), % 0
30 to 32
Nitrogen (N), % 0
0.15 to 0.25
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0 to 0.15
0 to 0.3
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0.1 to 0.25
0
Residuals, % 0 to 0.15
0