MakeItFrom.com
Menu (ESC)

535.0 Aluminum vs. S30615 Stainless Steel

535.0 aluminum belongs to the aluminum alloys classification, while S30615 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 535.0 aluminum and the bottom bar is S30615 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 70
190
Elastic (Young's, Tensile) Modulus, GPa 67
190
Elongation at Break, % 10
39
Fatigue Strength, MPa 70
270
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 25
75
Shear Strength, MPa 190
470
Tensile Strength: Ultimate (UTS), MPa 270
690
Tensile Strength: Yield (Proof), MPa 140
310

Thermal Properties

Latent Heat of Fusion, J/g 390
340
Maximum Temperature: Mechanical, °C 170
960
Melting Completion (Liquidus), °C 630
1370
Melting Onset (Solidus), °C 570
1320
Specific Heat Capacity, J/kg-K 910
500
Thermal Conductivity, W/m-K 100
14
Thermal Expansion, µm/m-K 24
16

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
19
Density, g/cm3 2.6
7.6
Embodied Carbon, kg CO2/kg material 9.4
3.7
Embodied Energy, MJ/kg 160
53
Embodied Water, L/kg 1180
170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24
220
Resilience: Unit (Modulus of Resilience), kJ/m3 150
260
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 51
25
Strength to Weight: Axial, points 28
25
Strength to Weight: Bending, points 35
23
Thermal Diffusivity, mm2/s 42
3.7
Thermal Shock Resistance, points 12
16

Alloy Composition

Aluminum (Al), % 91.5 to 93.6
0.8 to 1.5
Beryllium (Be), % 0.0030 to 0.0070
0
Boron (B), % 0 to 0.0050
0
Carbon (C), % 0
0.16 to 0.24
Chromium (Cr), % 0
17 to 19.5
Copper (Cu), % 0 to 0.050
0
Iron (Fe), % 0 to 0.15
56.7 to 65.3
Magnesium (Mg), % 6.2 to 7.5
0
Manganese (Mn), % 0.1 to 0.25
0 to 2.0
Nickel (Ni), % 0
13.5 to 16
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.15
3.2 to 4.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0.1 to 0.25
0
Residuals, % 0 to 0.15
0