MakeItFrom.com
Menu (ESC)

535.0 Aluminum vs. S31730 Stainless Steel

535.0 aluminum belongs to the aluminum alloys classification, while S31730 stainless steel belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 535.0 aluminum and the bottom bar is S31730 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 70
180
Elastic (Young's, Tensile) Modulus, GPa 67
200
Elongation at Break, % 10
40
Fatigue Strength, MPa 70
170
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 25
77
Shear Strength, MPa 190
370
Tensile Strength: Ultimate (UTS), MPa 270
540
Tensile Strength: Yield (Proof), MPa 140
200

Thermal Properties

Latent Heat of Fusion, J/g 390
290
Maximum Temperature: Mechanical, °C 170
990
Melting Completion (Liquidus), °C 630
1430
Melting Onset (Solidus), °C 570
1390
Specific Heat Capacity, J/kg-K 910
470
Thermal Expansion, µm/m-K 24
16

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
24
Density, g/cm3 2.6
8.0
Embodied Carbon, kg CO2/kg material 9.4
4.6
Embodied Energy, MJ/kg 160
63
Embodied Water, L/kg 1180
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24
170
Resilience: Unit (Modulus of Resilience), kJ/m3 150
99
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 51
24
Strength to Weight: Axial, points 28
19
Strength to Weight: Bending, points 35
18
Thermal Shock Resistance, points 12
12

Alloy Composition

Aluminum (Al), % 91.5 to 93.6
0
Beryllium (Be), % 0.0030 to 0.0070
0
Boron (B), % 0 to 0.0050
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
17 to 19
Copper (Cu), % 0 to 0.050
4.0 to 5.0
Iron (Fe), % 0 to 0.15
52.4 to 61
Magnesium (Mg), % 6.2 to 7.5
0
Manganese (Mn), % 0.1 to 0.25
0 to 2.0
Molybdenum (Mo), % 0
3.0 to 4.0
Nickel (Ni), % 0
15 to 16.5
Nitrogen (N), % 0
0 to 0.045
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.15
0 to 1.0
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0.1 to 0.25
0
Residuals, % 0 to 0.15
0