MakeItFrom.com
Menu (ESC)

5383 Aluminum vs. EN 1.4982 Stainless Steel

5383 aluminum belongs to the aluminum alloys classification, while EN 1.4982 stainless steel belongs to the iron alloys. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5383 aluminum and the bottom bar is EN 1.4982 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 85 to 110
230
Elastic (Young's, Tensile) Modulus, GPa 68
200
Elongation at Break, % 6.7 to 15
28
Fatigue Strength, MPa 130 to 200
420
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
76
Shear Strength, MPa 190 to 220
490
Tensile Strength: Ultimate (UTS), MPa 310 to 370
750
Tensile Strength: Yield (Proof), MPa 150 to 310
570

Thermal Properties

Latent Heat of Fusion, J/g 390
290
Maximum Temperature: Corrosion, °C 65
540
Maximum Temperature: Mechanical, °C 200
860
Melting Completion (Liquidus), °C 650
1430
Melting Onset (Solidus), °C 540
1390
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 130
13
Thermal Expansion, µm/m-K 24
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 29
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 97
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
22
Density, g/cm3 2.7
7.8
Embodied Carbon, kg CO2/kg material 9.0
4.9
Embodied Energy, MJ/kg 160
71
Embodied Water, L/kg 1170
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 23 to 40
190
Resilience: Unit (Modulus of Resilience), kJ/m3 170 to 690
830
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 32 to 38
27
Strength to Weight: Bending, points 38 to 42
23
Thermal Diffusivity, mm2/s 51
3.4
Thermal Shock Resistance, points 14 to 16
17

Alloy Composition

Aluminum (Al), % 92 to 95.3
0
Boron (B), % 0
0.0030 to 0.0090
Carbon (C), % 0
0.070 to 0.13
Chromium (Cr), % 0 to 0.25
14 to 16
Copper (Cu), % 0 to 0.2
0
Iron (Fe), % 0 to 0.25
61.8 to 69.7
Magnesium (Mg), % 4.0 to 5.2
0
Manganese (Mn), % 0.7 to 1.0
5.5 to 7.0
Molybdenum (Mo), % 0
0.8 to 1.2
Nickel (Ni), % 0
9.0 to 11
Niobium (Nb), % 0
0.75 to 1.3
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.25
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.15
0
Vanadium (V), % 0
0.15 to 0.4
Zinc (Zn), % 0 to 0.4
0
Zirconium (Zr), % 0 to 0.2
0
Residuals, % 0 to 0.15
0