MakeItFrom.com
Menu (ESC)

5454 Aluminum vs. EN 1.4508 Stainless Steel

5454 aluminum belongs to the aluminum alloys classification, while EN 1.4508 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5454 aluminum and the bottom bar is EN 1.4508 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
200
Elongation at Break, % 2.3 to 18
34
Fatigue Strength, MPa 83 to 160
210
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
79
Tensile Strength: Ultimate (UTS), MPa 230 to 350
570
Tensile Strength: Yield (Proof), MPa 97 to 290
260

Thermal Properties

Latent Heat of Fusion, J/g 400
300
Maximum Temperature: Mechanical, °C 190
1000
Melting Completion (Liquidus), °C 650
1450
Melting Onset (Solidus), °C 600
1400
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 130
15
Thermal Expansion, µm/m-K 24
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 34
2.1
Electrical Conductivity: Equal Weight (Specific), % IACS 110
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
20
Density, g/cm3 2.7
7.9
Embodied Carbon, kg CO2/kg material 8.6
4.0
Embodied Energy, MJ/kg 150
55
Embodied Water, L/kg 1180
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.3 to 34
160
Resilience: Unit (Modulus of Resilience), kJ/m3 68 to 590
170
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 23 to 36
20
Strength to Weight: Bending, points 30 to 41
19
Thermal Diffusivity, mm2/s 55
4.1
Thermal Shock Resistance, points 10 to 16
17

Alloy Composition

Aluminum (Al), % 94.5 to 97.1
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0.050 to 0.2
18 to 20
Copper (Cu), % 0 to 0.1
0
Iron (Fe), % 0 to 0.4
61.2 to 69.9
Magnesium (Mg), % 2.4 to 3.0
0
Manganese (Mn), % 0.5 to 1.0
0 to 1.5
Molybdenum (Mo), % 0
3.0 to 3.5
Nickel (Ni), % 0
9.0 to 12
Nitrogen (N), % 0
0.1 to 0.2
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.25
0 to 1.5
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0