MakeItFrom.com
Menu (ESC)

5454 Aluminum vs. Grade 9 Titanium

5454 aluminum belongs to the aluminum alloys classification, while grade 9 titanium belongs to the titanium alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 5454 aluminum and the bottom bar is grade 9 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
110
Elongation at Break, % 2.3 to 18
11 to 17
Fatigue Strength, MPa 83 to 160
330 to 480
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 26
40
Shear Strength, MPa 140 to 200
430 to 580
Tensile Strength: Ultimate (UTS), MPa 230 to 350
700 to 960
Tensile Strength: Yield (Proof), MPa 97 to 290
540 to 830

Thermal Properties

Latent Heat of Fusion, J/g 400
410
Maximum Temperature: Mechanical, °C 190
330
Melting Completion (Liquidus), °C 650
1640
Melting Onset (Solidus), °C 600
1590
Specific Heat Capacity, J/kg-K 900
550
Thermal Conductivity, W/m-K 130
8.1
Thermal Expansion, µm/m-K 24
9.1

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 34
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 110
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
37
Density, g/cm3 2.7
4.5
Embodied Carbon, kg CO2/kg material 8.6
36
Embodied Energy, MJ/kg 150
580
Embodied Water, L/kg 1180
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.3 to 34
89 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 68 to 590
1380 to 3220
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
35
Strength to Weight: Axial, points 23 to 36
43 to 60
Strength to Weight: Bending, points 30 to 41
39 to 48
Thermal Diffusivity, mm2/s 55
3.3
Thermal Shock Resistance, points 10 to 16
52 to 71

Alloy Composition

Aluminum (Al), % 94.5 to 97.1
2.5 to 3.5
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0.050 to 0.2
0
Copper (Cu), % 0 to 0.1
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0 to 0.4
0 to 0.25
Magnesium (Mg), % 2.4 to 3.0
0
Manganese (Mn), % 0.5 to 1.0
0
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0 to 0.15
Silicon (Si), % 0 to 0.25
0
Titanium (Ti), % 0 to 0.2
92.6 to 95.5
Vanadium (V), % 0
2.0 to 3.0
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0
0 to 0.4

Comparable Variants