MakeItFrom.com
Menu (ESC)

5657 Aluminum vs. EN 1.4982 Stainless Steel

5657 aluminum belongs to the aluminum alloys classification, while EN 1.4982 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5657 aluminum and the bottom bar is EN 1.4982 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 40 to 50
230
Elastic (Young's, Tensile) Modulus, GPa 68
200
Elongation at Break, % 6.6 to 15
28
Fatigue Strength, MPa 74 to 88
420
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
76
Shear Strength, MPa 92 to 110
490
Tensile Strength: Ultimate (UTS), MPa 150 to 200
750
Tensile Strength: Yield (Proof), MPa 140 to 170
570

Thermal Properties

Latent Heat of Fusion, J/g 400
290
Maximum Temperature: Mechanical, °C 180
860
Melting Completion (Liquidus), °C 660
1430
Melting Onset (Solidus), °C 640
1390
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 210
13
Thermal Expansion, µm/m-K 24
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 54
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 180
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
22
Density, g/cm3 2.7
7.8
Embodied Carbon, kg CO2/kg material 8.4
4.9
Embodied Energy, MJ/kg 160
71
Embodied Water, L/kg 1200
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 9.7 to 27
190
Resilience: Unit (Modulus of Resilience), kJ/m3 140 to 200
830
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 15 to 20
27
Strength to Weight: Bending, points 23 to 28
23
Thermal Diffusivity, mm2/s 84
3.4
Thermal Shock Resistance, points 6.7 to 8.6
17

Alloy Composition

Aluminum (Al), % 98.5 to 99.4
0
Boron (B), % 0
0.0030 to 0.0090
Carbon (C), % 0
0.070 to 0.13
Chromium (Cr), % 0
14 to 16
Copper (Cu), % 0 to 0.1
0
Gallium (Ga), % 0 to 0.030
0
Iron (Fe), % 0 to 0.1
61.8 to 69.7
Magnesium (Mg), % 0.6 to 1.0
0
Manganese (Mn), % 0 to 0.030
5.5 to 7.0
Molybdenum (Mo), % 0
0.8 to 1.2
Nickel (Ni), % 0
9.0 to 11
Niobium (Nb), % 0
0.75 to 1.3
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.080
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Vanadium (V), % 0 to 0.050
0.15 to 0.4
Zinc (Zn), % 0 to 0.050
0
Residuals, % 0 to 0.050
0