MakeItFrom.com
Menu (ESC)

6012 Aluminum vs. 7116 Aluminum

Both 6012 aluminum and 7116 aluminum are aluminum alloys. They have a moderately high 94% of their average alloy composition in common.

For each property being compared, the top bar is 6012 aluminum and the bottom bar is 7116 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
69
Elongation at Break, % 9.1 to 11
7.8
Fatigue Strength, MPa 55 to 100
160
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
26
Shear Strength, MPa 130 to 190
220
Tensile Strength: Ultimate (UTS), MPa 220 to 320
370
Tensile Strength: Yield (Proof), MPa 110 to 260
330

Thermal Properties

Latent Heat of Fusion, J/g 400
380
Maximum Temperature: Mechanical, °C 170
170
Melting Completion (Liquidus), °C 640
640
Melting Onset (Solidus), °C 570
520
Specific Heat Capacity, J/kg-K 890
880
Thermal Conductivity, W/m-K 160
150
Thermal Expansion, µm/m-K 23
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 45
46
Electrical Conductivity: Equal Weight (Specific), % IACS 140
140

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.9
2.9
Embodied Carbon, kg CO2/kg material 8.2
8.2
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1170
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 21 to 28
28
Resilience: Unit (Modulus of Resilience), kJ/m3 94 to 480
790
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 48
47
Strength to Weight: Axial, points 22 to 32
35
Strength to Weight: Bending, points 29 to 37
39
Thermal Diffusivity, mm2/s 62
58
Thermal Shock Resistance, points 10 to 14
16

Alloy Composition

Aluminum (Al), % 92.2 to 98
91.5 to 94.5
Bismuth (Bi), % 0 to 0.7
0
Chromium (Cr), % 0 to 0.3
0
Copper (Cu), % 0 to 0.1
0.5 to 1.1
Gallium (Ga), % 0
0 to 0.030
Iron (Fe), % 0 to 0.5
0 to 0.3
Lead (Pb), % 0.4 to 2.0
0
Magnesium (Mg), % 0.6 to 1.2
0.8 to 1.4
Manganese (Mn), % 0.4 to 1.0
0 to 0.050
Silicon (Si), % 0.6 to 1.4
0 to 0.15
Titanium (Ti), % 0 to 0.2
0 to 0.050
Vanadium (V), % 0
0 to 0.050
Zinc (Zn), % 0 to 0.3
4.2 to 5.2
Residuals, % 0
0 to 0.15