MakeItFrom.com
Menu (ESC)

6012 Aluminum vs. C12600 Copper

6012 aluminum belongs to the aluminum alloys classification, while C12600 copper belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6012 aluminum and the bottom bar is C12600 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
120
Elongation at Break, % 9.1 to 11
56
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 26
56
Shear Strength, MPa 130 to 190
190
Tensile Strength: Ultimate (UTS), MPa 220 to 320
270
Tensile Strength: Yield (Proof), MPa 110 to 260
69

Thermal Properties

Latent Heat of Fusion, J/g 400
210
Maximum Temperature: Mechanical, °C 170
200
Melting Completion (Liquidus), °C 640
1080
Melting Onset (Solidus), °C 570
1030
Specific Heat Capacity, J/kg-K 890
390
Thermal Conductivity, W/m-K 160
130
Thermal Expansion, µm/m-K 23
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 45
29
Electrical Conductivity: Equal Weight (Specific), % IACS 140
29

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
30
Density, g/cm3 2.9
8.9
Embodied Carbon, kg CO2/kg material 8.2
2.6
Embodied Energy, MJ/kg 150
41
Embodied Water, L/kg 1170
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 21 to 28
110
Resilience: Unit (Modulus of Resilience), kJ/m3 94 to 480
21
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 48
18
Strength to Weight: Axial, points 22 to 32
8.2
Strength to Weight: Bending, points 29 to 37
10
Thermal Diffusivity, mm2/s 62
39
Thermal Shock Resistance, points 10 to 14
9.5

Alloy Composition

Aluminum (Al), % 92.2 to 98
0
Bismuth (Bi), % 0 to 0.7
0
Chromium (Cr), % 0 to 0.3
0
Copper (Cu), % 0 to 0.1
99.5 to 99.8
Iron (Fe), % 0 to 0.5
0
Lead (Pb), % 0.4 to 2.0
0
Magnesium (Mg), % 0.6 to 1.2
0
Manganese (Mn), % 0.4 to 1.0
0
Phosphorus (P), % 0
0.2 to 0.4
Silicon (Si), % 0.6 to 1.4
0
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.3
0
Residuals, % 0 to 0.15
0