MakeItFrom.com
Menu (ESC)

6014 Aluminum vs. AWS E310Nb

6014 aluminum belongs to the aluminum alloys classification, while AWS E310Nb belongs to the iron alloys. There are 24 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6014 aluminum and the bottom bar is AWS E310Nb.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
200
Elongation at Break, % 9.1 to 17
29
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
79
Tensile Strength: Ultimate (UTS), MPa 160 to 260
620

Thermal Properties

Latent Heat of Fusion, J/g 400
300
Melting Completion (Liquidus), °C 640
1410
Melting Onset (Solidus), °C 620
1370
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 200
14
Thermal Expansion, µm/m-K 23
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 53
2.1
Electrical Conductivity: Equal Weight (Specific), % IACS 180
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
31
Density, g/cm3 2.7
7.9
Embodied Carbon, kg CO2/kg material 8.6
5.3
Embodied Energy, MJ/kg 160
76
Embodied Water, L/kg 1190
200

Common Calculations

Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 16 to 26
22
Strength to Weight: Bending, points 24 to 33
20
Thermal Diffusivity, mm2/s 83
3.8
Thermal Shock Resistance, points 7.0 to 11
15

Alloy Composition

Aluminum (Al), % 97.1 to 99.2
0
Carbon (C), % 0
0 to 0.12
Chromium (Cr), % 0 to 0.2
25 to 28
Copper (Cu), % 0 to 0.25
0 to 0.75
Iron (Fe), % 0 to 0.35
44.1 to 53.3
Magnesium (Mg), % 0.4 to 0.8
0
Manganese (Mn), % 0.050 to 0.2
1.0 to 2.5
Molybdenum (Mo), % 0
0 to 0.75
Nickel (Ni), % 0
20 to 22
Niobium (Nb), % 0
0.7 to 1.0
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0.3 to 0.6
0 to 0.75
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.1
0
Vanadium (V), % 0.050 to 0.2
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0