MakeItFrom.com
Menu (ESC)

6018 Aluminum vs. AISI 434 Stainless Steel

6018 aluminum belongs to the aluminum alloys classification, while AISI 434 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6018 aluminum and the bottom bar is AISI 434 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
200
Elongation at Break, % 9.0 to 9.1
24
Fatigue Strength, MPa 85 to 89
220
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
78
Shear Strength, MPa 170 to 180
330
Tensile Strength: Ultimate (UTS), MPa 290 to 300
520
Tensile Strength: Yield (Proof), MPa 220 to 230
320

Thermal Properties

Latent Heat of Fusion, J/g 400
280
Maximum Temperature: Mechanical, °C 160
880
Melting Completion (Liquidus), °C 640
1510
Melting Onset (Solidus), °C 570
1430
Specific Heat Capacity, J/kg-K 890
480
Thermal Conductivity, W/m-K 170
25
Thermal Expansion, µm/m-K 23
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 44
2.5
Electrical Conductivity: Equal Weight (Specific), % IACS 140
2.9

Otherwise Unclassified Properties

Base Metal Price, % relative 10
9.5
Density, g/cm3 2.9
7.7
Embodied Carbon, kg CO2/kg material 8.2
2.4
Embodied Energy, MJ/kg 150
33
Embodied Water, L/kg 1180
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24 to 25
110
Resilience: Unit (Modulus of Resilience), kJ/m3 360 to 380
260
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 48
25
Strength to Weight: Axial, points 28 to 29
19
Strength to Weight: Bending, points 34 to 35
18
Thermal Diffusivity, mm2/s 65
6.7
Thermal Shock Resistance, points 13
19

Alloy Composition

Aluminum (Al), % 93.1 to 97.8
0
Bismuth (Bi), % 0.4 to 0.7
0
Carbon (C), % 0
0 to 0.12
Chromium (Cr), % 0 to 0.1
16 to 18
Copper (Cu), % 0.15 to 0.4
0
Iron (Fe), % 0 to 0.7
78.6 to 83.3
Lead (Pb), % 0.4 to 1.2
0
Magnesium (Mg), % 0.6 to 1.2
0
Manganese (Mn), % 0.3 to 0.8
0 to 1.0
Molybdenum (Mo), % 0
0.75 to 1.3
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0.5 to 1.2
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.3
0
Residuals, % 0 to 0.15
0