MakeItFrom.com
Menu (ESC)

6063-O Aluminum vs. EN 1.7386 +I Steel

6063-O aluminum belongs to the aluminum alloys classification, while EN 1.7386 +I steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6063-O aluminum and the bottom bar is EN 1.7386 +I steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 25
170
Elastic (Young's, Tensile) Modulus, GPa 68
190
Elongation at Break, % 21
21
Fatigue Strength, MPa 55
170
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
75
Shear Strength, MPa 70
340
Tensile Strength: Ultimate (UTS), MPa 110
550
Tensile Strength: Yield (Proof), MPa 49
240

Thermal Properties

Latent Heat of Fusion, J/g 400
270
Maximum Temperature: Mechanical, °C 160
600
Melting Completion (Liquidus), °C 650
1450
Melting Onset (Solidus), °C 620
1410
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 220
26
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 58
9.0
Electrical Conductivity: Equal Weight (Specific), % IACS 190
10

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
6.5
Density, g/cm3 2.7
7.8
Embodied Carbon, kg CO2/kg material 8.3
2.0
Embodied Energy, MJ/kg 150
28
Embodied Water, L/kg 1190
88

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 19
92
Resilience: Unit (Modulus of Resilience), kJ/m3 18
150
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 11
20
Strength to Weight: Bending, points 18
19
Thermal Diffusivity, mm2/s 89
6.9
Thermal Shock Resistance, points 4.8
15

Alloy Composition

Aluminum (Al), % 97.5 to 99.4
0 to 0.040
Carbon (C), % 0
0.080 to 0.15
Chromium (Cr), % 0 to 0.1
8.0 to 10
Copper (Cu), % 0 to 0.1
0 to 0.3
Iron (Fe), % 0 to 0.35
86.8 to 90.5
Magnesium (Mg), % 0.45 to 0.9
0
Manganese (Mn), % 0 to 0.1
0.3 to 0.6
Molybdenum (Mo), % 0
0.9 to 1.1
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0.2 to 0.6
0.25 to 1.0
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0