MakeItFrom.com
Menu (ESC)

6065-T6 Aluminum vs. 6351-T6 Aluminum

Both 6065-T6 aluminum and 6351-T6 aluminum are aluminum alloys. Both are furnished in the T6 temper. They have a very high 98% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 6065-T6 aluminum and the bottom bar is 6351-T6 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
69
Elongation at Break, % 11
11
Fatigue Strength, MPa 110
90
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
26
Shear Strength, MPa 190
200
Tensile Strength: Ultimate (UTS), MPa 310
310
Tensile Strength: Yield (Proof), MPa 270
270

Thermal Properties

Latent Heat of Fusion, J/g 400
410
Maximum Temperature: Mechanical, °C 180
160
Melting Completion (Liquidus), °C 640
650
Melting Onset (Solidus), °C 590
570
Specific Heat Capacity, J/kg-K 890
900
Thermal Conductivity, W/m-K 170
180
Thermal Expansion, µm/m-K 23
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 43
46
Electrical Conductivity: Equal Weight (Specific), % IACS 140
150

Otherwise Unclassified Properties

Base Metal Price, % relative 11
9.5
Density, g/cm3 2.8
2.7
Embodied Carbon, kg CO2/kg material 8.4
8.3
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1200
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 34
33
Resilience: Unit (Modulus of Resilience), kJ/m3 540
540
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 49
50
Strength to Weight: Axial, points 31
32
Strength to Weight: Bending, points 36
38
Thermal Diffusivity, mm2/s 67
72
Thermal Shock Resistance, points 14
14

Alloy Composition

Aluminum (Al), % 94.4 to 98.2
96 to 98.5
Bismuth (Bi), % 0.5 to 1.5
0
Chromium (Cr), % 0 to 0.15
0
Copper (Cu), % 0.15 to 0.4
0 to 0.1
Iron (Fe), % 0 to 0.7
0 to 0.5
Lead (Pb), % 0 to 0.050
0
Magnesium (Mg), % 0.8 to 1.2
0.4 to 0.8
Manganese (Mn), % 0 to 0.15
0.4 to 0.8
Silicon (Si), % 0.4 to 0.8
0.7 to 1.3
Titanium (Ti), % 0 to 0.1
0 to 0.2
Zinc (Zn), % 0 to 0.25
0 to 0.2
Zirconium (Zr), % 0 to 0.15
0
Residuals, % 0
0 to 0.15