MakeItFrom.com
Menu (ESC)

6082 Aluminum vs. S21640 Stainless Steel

6082 aluminum belongs to the aluminum alloys classification, while S21640 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6082 aluminum and the bottom bar is S21640 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 40 to 95
230
Elastic (Young's, Tensile) Modulus, GPa 69
200
Elongation at Break, % 6.3 to 18
46
Fatigue Strength, MPa 55 to 130
320
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
78
Shear Strength, MPa 84 to 220
520
Tensile Strength: Ultimate (UTS), MPa 140 to 340
740
Tensile Strength: Yield (Proof), MPa 85 to 320
350

Thermal Properties

Latent Heat of Fusion, J/g 410
290
Maximum Temperature: Mechanical, °C 170
940
Melting Completion (Liquidus), °C 650
1430
Melting Onset (Solidus), °C 580
1380
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 160
15
Thermal Expansion, µm/m-K 23
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 42
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 140
2.8

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
17
Density, g/cm3 2.7
7.7
Embodied Carbon, kg CO2/kg material 8.3
3.6
Embodied Energy, MJ/kg 150
51
Embodied Water, L/kg 1170
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 19 to 43
280
Resilience: Unit (Modulus of Resilience), kJ/m3 52 to 710
300
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 14 to 35
27
Strength to Weight: Bending, points 21 to 40
23
Thermal Diffusivity, mm2/s 67
4.0
Thermal Shock Resistance, points 6.0 to 15
16

Alloy Composition

Aluminum (Al), % 95.2 to 98.3
0
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0 to 0.25
17.5 to 19.5
Copper (Cu), % 0 to 0.1
0
Iron (Fe), % 0 to 0.5
63 to 74.3
Magnesium (Mg), % 0.6 to 1.2
0
Manganese (Mn), % 0.4 to 1.0
3.5 to 6.5
Molybdenum (Mo), % 0
0.5 to 2.0
Nickel (Ni), % 0
4.0 to 6.5
Niobium (Nb), % 0
0.1 to 1.0
Nitrogen (N), % 0
0.080 to 0.3
Phosphorus (P), % 0
0 to 0.060
Silicon (Si), % 0.7 to 1.3
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.15
0