MakeItFrom.com
Menu (ESC)

60Cr-40Ni Alloy vs. AWS E383

60Cr-40Ni alloy belongs to the otherwise unclassified metals classification, while AWS E383 belongs to the iron alloys. They have 60% of their average alloy composition in common. There are 17 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is 60Cr-40Ni alloy and the bottom bar is AWS E383.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 220
210
Poisson's Ratio 0.25
0.28
Shear Modulus, GPa 87
80
Tensile Strength: Ultimate (UTS), MPa 870
580

Thermal Properties

Latent Heat of Fusion, J/g 370
320
Specific Heat Capacity, J/kg-K 490
470
Thermal Expansion, µm/m-K 16
14

Otherwise Unclassified Properties

Base Metal Price, % relative 49
37
Density, g/cm3 7.8
8.1
Embodied Carbon, kg CO2/kg material 7.4
6.4
Embodied Energy, MJ/kg 110
89
Embodied Water, L/kg 380
240

Common Calculations

Stiffness to Weight: Axial, points 16
14
Stiffness to Weight: Bending, points 26
24
Strength to Weight: Axial, points 31
20
Strength to Weight: Bending, points 26
19
Thermal Shock Resistance, points 18
15

Alloy Composition

Aluminum (Al), % 0 to 0.25
0
Carbon (C), % 0 to 0.1
0 to 0.030
Chromium (Cr), % 58 to 62
26.5 to 29
Copper (Cu), % 0
0.6 to 1.5
Iron (Fe), % 0 to 1.0
28.8 to 39.2
Manganese (Mn), % 0 to 0.3
0.5 to 2.5
Molybdenum (Mo), % 0
3.2 to 4.2
Nickel (Ni), % 34.5 to 42
30 to 33
Nitrogen (N), % 0 to 0.3
0
Phosphorus (P), % 0 to 0.020
0 to 0.020
Silicon (Si), % 0 to 1.0
0 to 0.9
Sulfur (S), % 0 to 0.020
0 to 0.020
Titanium (Ti), % 0 to 0.5
0