MakeItFrom.com
Menu (ESC)

6101B Aluminum vs. ACI-ASTM CF8C Steel

6101B aluminum belongs to the aluminum alloys classification, while ACI-ASTM CF8C steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6101B aluminum and the bottom bar is ACI-ASTM CF8C steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
200
Elongation at Break, % 9.1 to 13
40
Fatigue Strength, MPa 62 to 70
220
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
77
Tensile Strength: Ultimate (UTS), MPa 190 to 250
530
Tensile Strength: Yield (Proof), MPa 140 to 180
260

Thermal Properties

Latent Heat of Fusion, J/g 400
300
Maximum Temperature: Mechanical, °C 160
980
Melting Completion (Liquidus), °C 640
1420
Melting Onset (Solidus), °C 630
1430
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 210
16
Thermal Expansion, µm/m-K 23
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 57
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 190
2.3

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
19
Density, g/cm3 2.7
7.8
Embodied Carbon, kg CO2/kg material 8.3
3.7
Embodied Energy, MJ/kg 150
53
Embodied Water, L/kg 1190
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 20 to 23
180
Resilience: Unit (Modulus of Resilience), kJ/m3 140 to 240
170
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 20 to 25
19
Strength to Weight: Bending, points 27 to 32
19
Thermal Diffusivity, mm2/s 87
4.3
Thermal Shock Resistance, points 8.5 to 11
11

Alloy Composition

Aluminum (Al), % 98.2 to 99.3
0
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0
18 to 21
Copper (Cu), % 0 to 0.050
0
Iron (Fe), % 0.1 to 0.3
61.8 to 73
Magnesium (Mg), % 0.35 to 0.6
0
Manganese (Mn), % 0 to 0.050
0 to 1.5
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0
9.0 to 12
Niobium (Nb), % 0
0 to 1.0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0.3 to 0.6
0 to 2.0
Sulfur (S), % 0
0 to 0.040
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.1
0