MakeItFrom.com
Menu (ESC)

6105 Aluminum vs. S46910 Stainless Steel

6105 aluminum belongs to the aluminum alloys classification, while S46910 stainless steel belongs to the iron alloys. There are 26 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6105 aluminum and the bottom bar is S46910 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
200
Elongation at Break, % 9.0 to 16
2.2 to 11
Fatigue Strength, MPa 95 to 130
250 to 1020
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
76
Shear Strength, MPa 120 to 170
410 to 1410
Tensile Strength: Ultimate (UTS), MPa 190 to 280
680 to 2470
Tensile Strength: Yield (Proof), MPa 120 to 270
450 to 2290

Thermal Properties

Latent Heat of Fusion, J/g 410
280
Maximum Temperature: Mechanical, °C 160
810
Melting Completion (Liquidus), °C 650
1460
Melting Onset (Solidus), °C 600
1420
Specific Heat Capacity, J/kg-K 900
470
Thermal Expansion, µm/m-K 23
11

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
18
Density, g/cm3 2.7
7.9
Embodied Carbon, kg CO2/kg material 8.3
4.1
Embodied Energy, MJ/kg 150
55
Embodied Water, L/kg 1180
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 25 to 27
48 to 130
Resilience: Unit (Modulus of Resilience), kJ/m3 100 to 550
510 to 4780
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 51
24
Strength to Weight: Axial, points 20 to 29
24 to 86
Strength to Weight: Bending, points 28 to 35
22 to 51
Thermal Shock Resistance, points 8.6 to 12
23 to 84

Alloy Composition

Aluminum (Al), % 97.2 to 99
0.15 to 0.5
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0 to 0.1
11 to 13
Copper (Cu), % 0 to 0.1
1.5 to 3.5
Iron (Fe), % 0 to 0.35
65 to 76
Magnesium (Mg), % 0.45 to 0.8
0
Manganese (Mn), % 0 to 0.1
0 to 1.0
Molybdenum (Mo), % 0
3.0 to 5.0
Nickel (Ni), % 0
8.0 to 10
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0.6 to 1.0
0 to 0.7
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.1
0.5 to 1.2
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0

Comparable Variants