MakeItFrom.com
Menu (ESC)

6110 Aluminum vs. ACI-ASTM CK3MCuN Steel

6110 aluminum belongs to the aluminum alloys classification, while ACI-ASTM CK3MCuN steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6110 aluminum and the bottom bar is ACI-ASTM CK3MCuN steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
200
Elongation at Break, % 2.2
39
Fatigue Strength, MPa 120
250
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
80
Tensile Strength: Ultimate (UTS), MPa 500
620
Tensile Strength: Yield (Proof), MPa 500
290

Thermal Properties

Latent Heat of Fusion, J/g 410
300
Maximum Temperature: Mechanical, °C 170
1090
Melting Completion (Liquidus), °C 640
1460
Melting Onset (Solidus), °C 600
1350
Specific Heat Capacity, J/kg-K 900
460
Thermal Conductivity, W/m-K 170
12
Thermal Expansion, µm/m-K 23
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 42
1.9
Electrical Conductivity: Equal Weight (Specific), % IACS 140
2.1

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
29
Density, g/cm3 2.8
8.0
Embodied Carbon, kg CO2/kg material 8.2
5.6
Embodied Energy, MJ/kg 150
76
Embodied Water, L/kg 1170
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11
200
Resilience: Unit (Modulus of Resilience), kJ/m3 1770
210
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 51
21
Strength to Weight: Bending, points 51
20
Thermal Diffusivity, mm2/s 67
3.2
Thermal Shock Resistance, points 22
14

Alloy Composition

Aluminum (Al), % 94.4 to 98.4
0
Carbon (C), % 0
0 to 0.025
Chromium (Cr), % 0.040 to 0.25
19.5 to 20.5
Copper (Cu), % 0.2 to 0.7
0.5 to 1.0
Iron (Fe), % 0 to 0.8
49.5 to 56.3
Magnesium (Mg), % 0.5 to 1.1
0
Manganese (Mn), % 0.2 to 0.7
0 to 1.2
Molybdenum (Mo), % 0
6.0 to 7.0
Nickel (Ni), % 0
17.5 to 19.5
Nitrogen (N), % 0
0.18 to 0.24
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0.7 to 1.5
0 to 1.0
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.3
0
Residuals, % 0 to 0.15
0