MakeItFrom.com
Menu (ESC)

6151 Aluminum vs. Grade 23 Titanium

6151 aluminum belongs to the aluminum alloys classification, while grade 23 titanium belongs to the titanium alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 6151 aluminum and the bottom bar is grade 23 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
110
Elongation at Break, % 1.1 to 5.7
6.7 to 11
Fatigue Strength, MPa 80 to 100
470 to 500
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 26
40
Shear Strength, MPa 190 to 200
540 to 570
Tensile Strength: Ultimate (UTS), MPa 330 to 340
930 to 940
Tensile Strength: Yield (Proof), MPa 270 to 280
850 to 870

Thermal Properties

Latent Heat of Fusion, J/g 410
410
Maximum Temperature: Mechanical, °C 170
340
Melting Completion (Liquidus), °C 650
1610
Melting Onset (Solidus), °C 590
1560
Specific Heat Capacity, J/kg-K 900
560
Thermal Conductivity, W/m-K 170
7.1
Thermal Expansion, µm/m-K 23
9.4

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 45
1.0
Electrical Conductivity: Equal Weight (Specific), % IACS 150
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
36
Density, g/cm3 2.7
4.4
Embodied Carbon, kg CO2/kg material 8.2
38
Embodied Energy, MJ/kg 150
610
Embodied Water, L/kg 1180
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 3.5 to 18
61 to 100
Resilience: Unit (Modulus of Resilience), kJ/m3 520 to 580
3430 to 3560
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
35
Strength to Weight: Axial, points 34
58 to 59
Strength to Weight: Bending, points 39
48
Thermal Diffusivity, mm2/s 70
2.9
Thermal Shock Resistance, points 15
67 to 68

Alloy Composition

Aluminum (Al), % 95.6 to 98.8
5.5 to 6.5
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0.15 to 0.35
0
Copper (Cu), % 0 to 0.35
0
Hydrogen (H), % 0
0 to 0.013
Iron (Fe), % 0 to 1.0
0 to 0.25
Magnesium (Mg), % 0.45 to 0.8
0
Manganese (Mn), % 0 to 0.2
0
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0 to 0.13
Silicon (Si), % 0.6 to 1.2
0
Titanium (Ti), % 0 to 0.15
88.1 to 91
Vanadium (V), % 0
3.5 to 4.5
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0
0 to 0.4