MakeItFrom.com
Menu (ESC)

6262 Aluminum vs. AWS ERNiFeCr-2

6262 aluminum belongs to the aluminum alloys classification, while AWS ERNiFeCr-2 belongs to the nickel alloys. There are 24 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6262 aluminum and the bottom bar is AWS ERNiFeCr-2.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
190
Elongation at Break, % 4.6 to 10
28
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
75
Tensile Strength: Ultimate (UTS), MPa 290 to 390
1300

Thermal Properties

Latent Heat of Fusion, J/g 400
310
Melting Completion (Liquidus), °C 650
1460
Melting Onset (Solidus), °C 580
1410
Specific Heat Capacity, J/kg-K 890
450
Thermal Conductivity, W/m-K 170
12
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 44
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 140
1.5

Otherwise Unclassified Properties

Base Metal Price, % relative 10
75
Density, g/cm3 2.8
8.3
Embodied Carbon, kg CO2/kg material 8.3
13
Embodied Energy, MJ/kg 150
190
Embodied Water, L/kg 1190
250

Common Calculations

Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 48
23
Strength to Weight: Axial, points 29 to 39
43
Strength to Weight: Bending, points 35 to 42
32
Thermal Diffusivity, mm2/s 69
3.2
Thermal Shock Resistance, points 13 to 18
38

Alloy Composition

Aluminum (Al), % 94.7 to 97.8
0.2 to 0.8
Bismuth (Bi), % 0.4 to 0.7
0
Boron (B), % 0
0 to 0.0030
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0.040 to 0.14
17 to 21
Copper (Cu), % 0.15 to 0.4
0 to 0.3
Iron (Fe), % 0 to 0.7
11.6 to 24.6
Lead (Pb), % 0.4 to 0.7
0
Magnesium (Mg), % 0.8 to 1.2
0
Manganese (Mn), % 0 to 0.15
0 to 0.35
Molybdenum (Mo), % 0
2.8 to 3.3
Nickel (Ni), % 0
50 to 55
Niobium (Nb), % 0
4.8 to 5.5
Phosphorus (P), % 0
0 to 0.015
Silicon (Si), % 0.4 to 0.8
0 to 0.35
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.15
0.65 to 1.2
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0
0 to 0.5