MakeItFrom.com
Menu (ESC)

6262A Aluminum vs. EN 1.8523 Steel

6262A aluminum belongs to the aluminum alloys classification, while EN 1.8523 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6262A aluminum and the bottom bar is EN 1.8523 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
190
Elongation at Break, % 4.5 to 11
15
Fatigue Strength, MPa 94 to 110
530
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
74
Shear Strength, MPa 190 to 240
610
Tensile Strength: Ultimate (UTS), MPa 310 to 410
1000
Tensile Strength: Yield (Proof), MPa 270 to 370
800

Thermal Properties

Latent Heat of Fusion, J/g 400
260
Maximum Temperature: Mechanical, °C 160
480
Melting Completion (Liquidus), °C 640
1460
Melting Onset (Solidus), °C 580
1420
Specific Heat Capacity, J/kg-K 890
470
Thermal Conductivity, W/m-K 170
39
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 45
7.8
Electrical Conductivity: Equal Weight (Specific), % IACS 140
9.0

Otherwise Unclassified Properties

Base Metal Price, % relative 11
4.2
Density, g/cm3 2.8
7.8
Embodied Carbon, kg CO2/kg material 8.4
2.2
Embodied Energy, MJ/kg 150
31
Embodied Water, L/kg 1190
64

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 17 to 34
140
Resilience: Unit (Modulus of Resilience), kJ/m3 540 to 1000
1700
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 49
24
Strength to Weight: Axial, points 31 to 41
36
Strength to Weight: Bending, points 36 to 44
28
Thermal Diffusivity, mm2/s 67
10
Thermal Shock Resistance, points 14 to 18
29

Alloy Composition

Aluminum (Al), % 94.2 to 97.8
0
Bismuth (Bi), % 0.4 to 0.9
0
Carbon (C), % 0
0.35 to 0.45
Chromium (Cr), % 0.040 to 0.14
3.0 to 3.5
Copper (Cu), % 0.15 to 0.4
0
Iron (Fe), % 0 to 0.7
93.5 to 95.7
Magnesium (Mg), % 0.8 to 1.2
0
Manganese (Mn), % 0 to 0.15
0.4 to 0.7
Molybdenum (Mo), % 0
0.8 to 1.1
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0.4 to 0.8
0 to 0.4
Sulfur (S), % 0
0 to 0.035
Tin (Sn), % 0.4 to 1.0
0
Titanium (Ti), % 0 to 0.1
0
Vanadium (V), % 0
0.15 to 0.25
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0