MakeItFrom.com
Menu (ESC)

6360 Aluminum vs. AISI 416 Stainless Steel

6360 aluminum belongs to the aluminum alloys classification, while AISI 416 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6360 aluminum and the bottom bar is AISI 416 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
190
Elongation at Break, % 9.0 to 18
13 to 31
Fatigue Strength, MPa 31 to 67
230 to 340
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
76
Shear Strength, MPa 76 to 130
340 to 480
Tensile Strength: Ultimate (UTS), MPa 120 to 220
510 to 800
Tensile Strength: Yield (Proof), MPa 57 to 170
290 to 600

Thermal Properties

Latent Heat of Fusion, J/g 400
270
Maximum Temperature: Mechanical, °C 160
680
Melting Completion (Liquidus), °C 640
1530
Melting Onset (Solidus), °C 630
1480
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 210
30
Thermal Expansion, µm/m-K 23
9.9

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 54
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 180
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
7.0
Density, g/cm3 2.7
7.7
Embodied Carbon, kg CO2/kg material 8.3
1.9
Embodied Energy, MJ/kg 150
27
Embodied Water, L/kg 1190
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 14 to 19
98 to 140
Resilience: Unit (Modulus of Resilience), kJ/m3 24 to 210
220 to 940
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 13 to 23
18 to 29
Strength to Weight: Bending, points 20 to 30
18 to 25
Thermal Diffusivity, mm2/s 86
8.1
Thermal Shock Resistance, points 5.5 to 9.9
19 to 30

Alloy Composition

Aluminum (Al), % 97.8 to 99.3
0
Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0 to 0.050
12 to 14
Copper (Cu), % 0 to 0.15
0
Iron (Fe), % 0.1 to 0.3
83.2 to 87.9
Magnesium (Mg), % 0.25 to 0.45
0
Manganese (Mn), % 0.020 to 0.15
0 to 1.3
Phosphorus (P), % 0
0 to 0.060
Silicon (Si), % 0.35 to 0.8
0 to 1.0
Sulfur (S), % 0
0.15 to 0.35
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0