MakeItFrom.com
Menu (ESC)

7005 Aluminum vs. ACI-ASTM CF8C Steel

7005 aluminum belongs to the aluminum alloys classification, while ACI-ASTM CF8C steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7005 aluminum and the bottom bar is ACI-ASTM CF8C steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
200
Elongation at Break, % 10 to 20
40
Fatigue Strength, MPa 100 to 190
220
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
77
Tensile Strength: Ultimate (UTS), MPa 200 to 400
530
Tensile Strength: Yield (Proof), MPa 95 to 350
260

Thermal Properties

Latent Heat of Fusion, J/g 380
300
Maximum Temperature: Mechanical, °C 200
980
Melting Completion (Liquidus), °C 640
1420
Melting Onset (Solidus), °C 610
1430
Specific Heat Capacity, J/kg-K 880
480
Thermal Conductivity, W/m-K 140 to 170
16
Thermal Expansion, µm/m-K 23
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35 to 43
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 110 to 130
2.3

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
19
Density, g/cm3 2.9
7.8
Embodied Carbon, kg CO2/kg material 8.3
3.7
Embodied Energy, MJ/kg 150
53
Embodied Water, L/kg 1150
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 32 to 57
180
Resilience: Unit (Modulus of Resilience), kJ/m3 65 to 850
170
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 47
25
Strength to Weight: Axial, points 19 to 38
19
Strength to Weight: Bending, points 26 to 41
19
Thermal Diffusivity, mm2/s 54 to 65
4.3
Thermal Shock Resistance, points 8.7 to 18
11

Alloy Composition

Aluminum (Al), % 91 to 94.7
0
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0.060 to 0.2
18 to 21
Copper (Cu), % 0 to 0.1
0
Iron (Fe), % 0 to 0.4
61.8 to 73
Magnesium (Mg), % 1.0 to 1.8
0
Manganese (Mn), % 0.2 to 0.7
0 to 1.5
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0
9.0 to 12
Niobium (Nb), % 0
0 to 1.0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.35
0 to 2.0
Sulfur (S), % 0
0 to 0.040
Titanium (Ti), % 0.010 to 0.060
0
Zinc (Zn), % 4.0 to 5.0
0
Zirconium (Zr), % 0.080 to 0.2
0
Residuals, % 0 to 0.15
0