MakeItFrom.com
Menu (ESC)

7005 Aluminum vs. Grade 5 Titanium

7005 aluminum belongs to the aluminum alloys classification, while grade 5 titanium belongs to the titanium alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is 7005 aluminum and the bottom bar is grade 5 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
110
Elongation at Break, % 10 to 20
8.6 to 11
Fatigue Strength, MPa 100 to 190
530 to 630
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 26
40
Shear Strength, MPa 120 to 230
600 to 710
Tensile Strength: Ultimate (UTS), MPa 200 to 400
1000 to 1190
Tensile Strength: Yield (Proof), MPa 95 to 350
910 to 1110

Thermal Properties

Latent Heat of Fusion, J/g 380
410
Maximum Temperature: Mechanical, °C 200
330
Melting Completion (Liquidus), °C 640
1610
Melting Onset (Solidus), °C 610
1650
Specific Heat Capacity, J/kg-K 880
560
Thermal Conductivity, W/m-K 140 to 170
6.8
Thermal Expansion, µm/m-K 23
8.9

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35 to 43
1.0
Electrical Conductivity: Equal Weight (Specific), % IACS 110 to 130
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
36
Density, g/cm3 2.9
4.4
Embodied Carbon, kg CO2/kg material 8.3
38
Embodied Energy, MJ/kg 150
610
Embodied Water, L/kg 1150
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 32 to 57
100 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 65 to 850
3980 to 5880
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 47
35
Strength to Weight: Axial, points 19 to 38
62 to 75
Strength to Weight: Bending, points 26 to 41
50 to 56
Thermal Diffusivity, mm2/s 54 to 65
2.7
Thermal Shock Resistance, points 8.7 to 18
76 to 91

Alloy Composition

Aluminum (Al), % 91 to 94.7
5.5 to 6.8
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0.060 to 0.2
0
Copper (Cu), % 0 to 0.1
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0 to 0.4
0 to 0.4
Magnesium (Mg), % 1.0 to 1.8
0
Manganese (Mn), % 0.2 to 0.7
0
Nitrogen (N), % 0
0 to 0.050
Oxygen (O), % 0
0 to 0.2
Silicon (Si), % 0 to 0.35
0
Titanium (Ti), % 0.010 to 0.060
87.4 to 91
Vanadium (V), % 0
3.5 to 4.5
Yttrium (Y), % 0
0 to 0.0050
Zinc (Zn), % 4.0 to 5.0
0
Zirconium (Zr), % 0.080 to 0.2
0
Residuals, % 0
0 to 0.4

Comparable Variants