MakeItFrom.com
Menu (ESC)

7020 Aluminum vs. Nickel 693

7020 aluminum belongs to the aluminum alloys classification, while nickel 693 belongs to the nickel alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7020 aluminum and the bottom bar is nickel 693.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
200
Elongation at Break, % 8.4 to 14
34
Fatigue Strength, MPa 110 to 130
230
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
76
Shear Strength, MPa 110 to 230
440
Tensile Strength: Ultimate (UTS), MPa 190 to 390
660
Tensile Strength: Yield (Proof), MPa 120 to 310
310

Thermal Properties

Latent Heat of Fusion, J/g 380
330
Maximum Temperature: Mechanical, °C 210
1010
Melting Completion (Liquidus), °C 650
1350
Melting Onset (Solidus), °C 610
1310
Specific Heat Capacity, J/kg-K 880
480
Thermal Conductivity, W/m-K 150
9.1
Thermal Expansion, µm/m-K 23
13

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
60
Density, g/cm3 2.9
8.1
Embodied Carbon, kg CO2/kg material 8.3
9.9
Embodied Energy, MJ/kg 150
140
Embodied Water, L/kg 1150
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 23 to 46
190
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 690
250
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 47
24
Strength to Weight: Axial, points 18 to 37
23
Strength to Weight: Bending, points 25 to 41
21
Thermal Diffusivity, mm2/s 59
2.3
Thermal Shock Resistance, points 8.3 to 17
19

Alloy Composition

Aluminum (Al), % 91.2 to 94.8
2.5 to 4.0
Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0.1 to 0.35
27 to 31
Copper (Cu), % 0 to 0.2
0 to 0.5
Iron (Fe), % 0 to 0.4
2.5 to 6.0
Magnesium (Mg), % 1.0 to 1.4
0
Manganese (Mn), % 0.050 to 0.5
0 to 1.0
Nickel (Ni), % 0
53.3 to 67.5
Niobium (Nb), % 0
0.5 to 2.5
Silicon (Si), % 0 to 0.35
0 to 0.5
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0 to 0.25
0 to 1.0
Zinc (Zn), % 4.0 to 5.0
0
Zirconium (Zr), % 0.080 to 0.25
0
Residuals, % 0 to 0.15
0