MakeItFrom.com
Menu (ESC)

7049 Aluminum vs. C90400 Bronze

7049 aluminum belongs to the aluminum alloys classification, while C90400 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7049 aluminum and the bottom bar is C90400 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 140
77
Elastic (Young's, Tensile) Modulus, GPa 70
110
Elongation at Break, % 6.2 to 7.0
24
Poisson's Ratio 0.32
0.34
Shear Modulus, GPa 27
41
Tensile Strength: Ultimate (UTS), MPa 510 to 530
310
Tensile Strength: Yield (Proof), MPa 420 to 450
180

Thermal Properties

Latent Heat of Fusion, J/g 370
190
Maximum Temperature: Mechanical, °C 180
170
Melting Completion (Liquidus), °C 640
990
Melting Onset (Solidus), °C 480
850
Specific Heat Capacity, J/kg-K 860
370
Thermal Conductivity, W/m-K 130
75
Thermal Expansion, µm/m-K 23
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 36
12
Electrical Conductivity: Equal Weight (Specific), % IACS 110
12

Otherwise Unclassified Properties

Base Metal Price, % relative 10
34
Density, g/cm3 3.1
8.7
Embodied Carbon, kg CO2/kg material 8.1
3.5
Embodied Energy, MJ/kg 140
56
Embodied Water, L/kg 1110
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 31 to 34
65
Resilience: Unit (Modulus of Resilience), kJ/m3 1270 to 1440
150
Stiffness to Weight: Axial, points 13
7.0
Stiffness to Weight: Bending, points 45
18
Strength to Weight: Axial, points 46 to 47
10
Strength to Weight: Bending, points 46 to 47
12
Thermal Diffusivity, mm2/s 51
23
Thermal Shock Resistance, points 22 to 23
11

Alloy Composition

Aluminum (Al), % 85.7 to 89.5
0 to 0.0050
Antimony (Sb), % 0
0 to 0.020
Boron (B), % 0
0 to 0.1
Chromium (Cr), % 0.1 to 0.22
0
Copper (Cu), % 1.2 to 1.9
86 to 89
Iron (Fe), % 0 to 0.35
0 to 0.4
Lead (Pb), % 0
0 to 0.090
Magnesium (Mg), % 2.0 to 2.9
0
Manganese (Mn), % 0 to 0.2
0 to 0.010
Nickel (Ni), % 0
0 to 1.0
Phosphorus (P), % 0
0 to 0.050
Silicon (Si), % 0 to 0.25
0 to 0.0050
Sulfur (S), % 0
0.1 to 0.65
Tin (Sn), % 0
7.5 to 8.5
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 7.2 to 8.2
1.0 to 5.0
Zirconium (Zr), % 0
0 to 0.1
Residuals, % 0
0 to 0.7